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Abstract

Cloud computing is immensely adopted in the modern age and cloud users are

significantly increasing. Due to the substantial demand of cloud services the pro-

vision of quality of services is becoming more challenging. Cloud systems utilize

the virtualization to efficiently scale the physical resources to provide uninter-

rupted and seamless services. Cloud users interact with the cloud system and

their requests are considered as jobs and necessary actions are taken to respond

them. The jobs are becoming more intensive and these require computationally

intensive processing. The resources in cloud systems are heterogeneous and differ-

ent scheduling heuristics are opted to map jobs to available resources. The cloud

service providers endeavor to improve the resource utilization and making the jobs

execution efficient which ultimately benefit their system and the customer satis-

faction increases. In the literature, the metrics of better makespan and maximum

resource utilization are observed to be fundamental for the satisfaction of cloud

service providers and consumers.

Different heuristics and meta-heuristics have been successfully applied to schedule

independent heterogeneous jobs to heterogeneous Virtual Machines (VMs). How-

ever, the meta-heuristics possess the potential to explore large search space of pos-

sible solutions unlike the heuristics that haste to a rapid conclusion. Makespan and

resource utilization being two different objectives are conflicting in nature, where

one is minimization and other is maximization function. The multi-objective op-

timization is essential to find better solution regarding makespan and resource

utilization. Evolutionary genetic approach is flexible enough for defining balance

in exploration and exploitation. In search of the optimal solution, the genetic

approach undergoes slow convergence. The BGA is presented which fuses the bal-

ancer mechanism in the GA, so that the makespan can be improved while not

disturbing the balance of workload among the resources. The SGA is presented to

improve the convergence of GA and it is applicable when fast discovery of optimal

solution is required.
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The performance is evaluated based on makespan and ARUR where ARUR is a

measure to compute the resource utilization. The presented techniques are as-

sessed with state-of-the-art techniques on synthetic and realistic datasets. The

BGA shows significant improvement in makespan and resource utilization over

DSOS, MGGS, ETA-GA and RALBA. The SGA shows faster convergence as

compared to DSOS and ETA-GA by finding a better solution in less number

of iterations.
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Chapter 1

Introduction

This chapter provides an overview of the problem of task scheduling in area of

cloud computing. The identified problem, applications, scope and contribution of

research in cloud computing are discussed in this chapter.

In this modern era, the internet is widely used, and the applications of technolo-

gies have increased considerably all over the world. The internet based online

applications are highly demanded by users [1]. With the expansion in the number

of users, the data is exponentially growing [2], which requires the need of more

computing resources. The immense use of internet resources and processing power

require effective scheduling of user’s tasks which is described later in this research.

The Cloud Computing is an emerging technology which ensures the delivery of

cloud resources in terms of storage, processing, memory and applications to the

end users [3]. Cloud computing is adopted by enterprises to perform computa-

tionally intensive tasks. The computing resources are distributed and accessed

over the internet. There can be many stakeholders involved in cloud computing

environment and some prominent stakeholders are cloud service provider, cloud

broker, and consumer of the services [4]. Out of these, two major entities directly

affected by task scheduling are cloud service provider and cloud service user. Both

parties have their own interests whereas the optimal performance being a common

advantage is essential for both sides. The cloud broker [5] acts as an intermediator

1
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between cloud service provider and service consumer. The interaction between the

cloud actors is shown in Figure 1.1. Cloud service provider strives to have good

satisfaction level of their service consumer. Cloud networks provide services to

user on demand; therefore, availability of resources is necessary [6]. Cloud service

providers make sure that the cloud systems are fully functional and optimized

enough to serve their valuable clients. There are three major classifications of

cloud services which are provided in the form of hardware and software. These

are Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS) [1, 4, 7, 8], they are defined as follows.

1. In IaaS, the cloud infrastructure having networks, storage, processing and

applications are provided to the user.

2. In PaaS, the platform for the development of applications is provided to the

user via the internet. The developers can develop and test their applications on

tools available in cloud machines.

3. In SaaS, the software applications are provided to the user remotely where the

user does not have to have software in their own system for usage.

Cloud Broker

Service
Provider

Service
Consumer

Figure 1.1: Stakeholders in Cloud
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The on-demand provisioning of resources, resource pooling and multi-tenancy are

some of the characteristics of cloud computing [9] which have attracted lot of users

to the cloud computing. These characteristics are described briefly as follows:

1. Multi-tenancy: In multi-tenancy cloud service providers share a single physical

resource. Same application can be shared among multiple customers.

2. Resource pooling: Same physical machine is used to serve lot of customers.

This is done through multi-tenancy.

3. Resource provisioning: The resources are available for customers and more

resources can be provisioned without having the intervention of service provider.

The cloud service providers strive for the best resource utilization which can ulti-

mately improve the user experience by providing quality of services [2] complying

with the QoS parameters. Lot of researches have been conducted in this regard to

find the optimal algorithm for mapping of tasks to VMs. This research presents

evolutionary approach intended to produce optimal mapping of tasks to VMs.

Research community is continuously working on scheduling algorithms in differ-

ent domains. One of the areas where scheduling is vastly used is cloud based

environment for the scheduling of cloudlets.

1.1 Heterogeneous Distributed Computing

The cloud resources are heterogeneous [5], which have different computational ca-

pabilities. These resources are in the datacenters which are distributed over the

network [4, 8, 10]. Datacenters have physical host machines and the host machines

are virtualized. The virtual resource in cloud is known as virtual machine (VM).

The virtualization is vastly applied in cloud computing [7, 11] and it serves some

major benefits in cloud computing environment. The virtual machine imitates

the physical machine by providing insulated hardware and application [12]. Vir-

tualization itself increases the resource utilization by avoiding the waste of actual
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resource. Virtualization affords multiple VMs simultaneously and an application

can be shared with multiple users. The cloud systems use the concept of virtual-

ization to provide the resources and operations in much efficient way.

Heterogeneity is also at the tasks arriving in the cloud datacenters [7]. These tasks

are usually of large size with varying requirements and constraints. The task size

is defined in million instructions (mi). Jobs are mapped to cloud resources and

this decision must be taken considering all the requirements of jobs and resources.

Clouds have their own infrastructures and policies [13]. The cloud users get con-

nected to cloud and they get services. The details of virtualized machines in cloud

are hidden from the clients and the clients are more concerned about their tasks

being executed efficiently. The cloud service providers want to do efficient uti-

lization of the available resources. Clients and cloud service providers may have

Service Level Agreements for provisioning of services [13] with any defined terms

and conditions.

1.2 Scheduling Issues

Task scheduling refers to the mapping of jobs to the VMs. The problem of task

scheduling in cloud environment is very vital because the cloud-based systems have

to efficiently use the cloud resources, in a way that leads to minimum finishing

time for the batch of jobs and maximum resource utilization. Task scheduler

has to provide a good mapping of cloudlets to VMs [5, 7, 14–22]. The need for

optimal mapping leads to meta-heuristic and heuristic approaches. There are many

heuristic, meta-heuristic and hybrid solutions available in the form of scheduling

algorithms [5, 7, 14, 23–30] but there is still need for improvement as the problem

is NP-hard. The meta-heuristic approaches have more potential to explore the

huge search space of possible solutions [28, 31] and they can be opted for getting

the promising results. But heuristic approaches are only problem dependent and

may not work well with different datasets [4, 30]. Therefore, optimization based

meta-heuristics can be much useful to overcome the dataset dependent results of
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scheduling [30]. Scheduling is done at both application level and Virtual Machine

(VM) level. VMs must get the cluster of jobs which are best suitable for them,

depending on some factors related to specification of VMs. Scheduling techniques

must consider all significant parameters of VM which is the resource and cloudlets

which execute on the resources. There is a need to have optimal mapping in which

the load balancing is considered with the improvement in finishing time of jobs.

The load balancing [2, 18, 19, 24, 32–34] is the notion of distribution of workload

among the heterogeneous resources in a way that neither a resource is over utilized

nor underutilized. The overutilization is identified as some resources are used

more than others during the execution of batch of jobs. The underutilization on

the other hand means that some resources remain idle while other are busy in

execution of batch of jobs [7, 13]. When there is underutilization then there exists

overutilization too [2, 7, 14, 24, 35]. Having hundred percent full utilization that

neither there exists overutilization nor underutilization is an ideal condition. But

scheduling approach should reduce the overutilization and underutilization [21, 36–

41]. Therefore, the balanced mapping of cloudlets to desired or most suitable

virtual machine is challenging and ongoing area of research in cloud computing.

Besides that, when the load is imbalanced there is another concept of virtual

machine migration in which the overloaded machines are migrated to other physical

server or machine [42, 43]. The load balancing is about balancing the load within

the available resources without migration of VM to another machine. The VM

migration is not under consideration in this research. There are different measures

to evaluate the resource utilization and these measures are part of QoS parameters.

ARUR is a measure that has been used extensively in the literature [7, 13, 35, 44–

51].

The optimal scheduling is subjective as there are some parameters which are con-

flicting like if execution time is focused too much then the algorithm maps largest

jobs to fastest VM and when response time is focused much then algorithm maps

smallest jobs to fastest VM. Some parameters are conflicting, but a balance can

still be created. Therefore, the optimal scheduling is subjective and depends on

the selected objectives. The scheduling techniques can be single or multi objective.
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In the literature many techniques are used for improving the optimization of task

scheduling [2, 5, 8, 10, 14, 17–19, 23, 24, 32, 44, 52–60]. They need proper tun-

ing of parameters to work for any problem. The meta-heuristics can be opted to

optimization problem by appropriate problem encoding. Identification of optimal

parameters for meta-heuristic helps to achieve the optimization goals. The objec-

tive function should be one covering the objectives of optimization like reducing

makespan and improving load balance among virtual machines.

1.3 Taxonomy of Tasks

In cloud environment jobs or tasks are of varying nature and their processing

requirements are different. Cloud jobs can be classified in categories of depen-

dent and independent jobs, according to their nature. The independent jobs can

be executed without depending on other jobs. The dependent jobs are normally

referred as workflow and they have priorities. It can further be classified as pre-

emptive and non-preemptive. The preemptive jobs can be interrupted during the

execution and their execution may be resumed later. Jobs may have deadline con-

straints and other Service Level Agreements (SLA) [13]. The SLA are negotiated

between the customer and service provider which enforce to comply with some

stipulated Quality of Service (QoS) parameters. They need separate heuristic and

meta-heuristic problem descriptions and constraints. In priority-based mapping

the scheduling decision is biased towards the priority of jobs and jobs are usually

preemptive. This research provides mechanism of mapping of jobs to VMs where

jobs have no priority or deadline [45, 61]. Having no deadline does not really

mean that timely execution of job is not important. This research is intended to

work on independent, non-preemptive at application level and static natured task

scheduling in cloud computing environment.

The Quality of Service (QoS) parameters [62] for cloud providers and cloud users

must be assured in a good cloud-based infrastructure. There are different QoS

parameters used for the evaluation of services provided to the consumer of services.
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Some QoS parameters are makespan, response time, cost, resource utilization,

throughput and energy consumption. These and other parameters must be focused

to improve user and service provider experience.

1.4 Scheduling Techniques

Scheduling techniques can be static or dynamic [63]. In static scheduling tech-

niques the information about the jobs and resources is available prior to the deci-

sion of scheduling [64]. Therefore, the decision is taken at the compile time. On

the other hand, in dynamic scheduling there is no information available about jobs

and resources prior to the execution of jobs. The dynamic scheduling can also be

called as online nature scheduling where the jobs arrive, and the scheduling is done

considering the previous states and estimations. In static scheduling the jobs are

received in batch before the scheduler decides their mapping.

Task scheduling techniques used in cloud computing environment can be catego-

rized as heuristic, meta-heuristic and hybrid approaches. Heuristic approaches are

made to achieve certain objectives and they comply merely with the specified cri-

teria. Based on some criteria the heuristic jumps to a solution. They do not have

the potential to explore further solutions unlike the meta-heuristics [4]. Heuristics

find fix solution with no further chances of improvement. Heuristics are problem

dependent and they cannot be applied to other range of problems. Whereas the

metaheuristic can be applied to vast range of optimization problems, particularly

when there are many possible solutions [30]. Meta-heuristics do need problem

dependent tuning and fitness criteria. The metaheuristics have the potential to

explore and exploit large search space to find better solution than the solution

discovered so far. The metaheuristics promise to find solution close to optimal

solution [34]. They are choice of researchers from years to solve optimization-

based NP-hard problems. The hybrid approaches have combination of heuristics,

metaheuristics or both [34]. The meta-heuristic and heuristic can work good in
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combination to overcome the vulnerabilities in the search process. They can be

combined in the following possible ways:

• Heuristic combined with other heuristic(s) [16].

• Metaheuristic merged with other metaheuristic(s) [10, 30, 39, 65, 66].

• Metaheuristic with heuristic(s) in main algorithm [14].

• Metaheuristic having heuristic(s) in initialization phase only [67].

Figure 1.2 shows some prominent type of schedulers used in cloud computing

environment. The static scheduler having hybrid techniques are focused in this

research.

Static Task Scheduler

Heuristic Meta-Heuristic Hybrid

Dynamic Task Scheduler

Task Scheduler

Evolutionary Swarm Intelligence

Genetic Algorithm

Differential Evolution

Particle Swarm
Optimization

Ant Colony Optimzation

Ant Bee Colony

Figure 1.2: Types of Schedulers in Cloud Computing
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1.5 Evolutionary Algorithms

The evolutionary algorithms [68] are techniques for finding the optimal solution.

In evolutionary approaches the algorithm strives to find better solution in each

iteration and the definition of better solution depends on the defined objective

function. The generic steps involved in evolutionary techniques are: Initialization,

evaluating the fitness of solutions, selection of best solution, updating the popu-

lation and termination. When the algorithm reaches to a stage where there is no

more improvement in the fitness value achieved so far then the algorithm is con-

sidered to be converged. The convergence is no guarantee that the best solution

has been discovered. The evolutionary approaches may take lot of time to reach

to the best possible solution and have their own capabilities to explore and exploit

the search space [2, 4, 8, 28, 30, 34, 52, 53, 69].

1.6 CloudSim

CloudSim [70] is a simulation framework and a tool developed for cloud computing

environment. It was built in CLOUDS laboratory in the University of Melbourne,

Australia. It is the most popular choice of testing the cloud-based scheduling

algorithms. The advantage of using cloudsim is that the user of CloudSim can

focus on the specific problem without being worried about the details of cloud-

based infrastructure as it is being handled in the classes of cloudsim. This provides

an environment of real cloud system where user can test the performance of their

proposed model. The scheduling algorithms can be used at different levels in

CloudSim library:

1. Scheduling can modify the mapping of VMs to datacenters and this is handled

in DatacenterBroker class.

2. Scheduling can decide the host machine for placing new VM. This is provided

in VmAllocationPolicy.
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3. VmScheduler is responsible for deciding the allocation of VM within a single

host machine.

4. CloudletScheduler receives the mapping of cloudlets to VMs and scheduling

algorithm is responsible to define an optimal mapping.

This research is related to the scheduling of tasks to VMs which is being handled

in CloudletScheduler. While the other mechanisms like scheduling of jobs within

a single VM and scheduling of VM to physical machine have their own algorithms

in cloudsim. They can be set to default and task scheduling is only related to

scheduling of heterogeneous tasks to heterogeneous VMs.

CloudSim has layered structure having Network, Cloud Resources, Cloud Services

and User Interface layers. These layers include the three models of services which

are IaaS, PaaS, and SaaS.

1.7 Problem Statement

In cloud computing the task scheduler needs to find an optimal mapping of jobs

to VMs, considering the makespan and load balancing, from a huge search space

of possible mappings. A few of existing techniques have tested their approaches

on large datasets based on real traces of cloud. For better task scheduling, the

existing schedulers using different meta-heuristics can be further improved and it

is required to achieve an early convergence in addition of better load balancing.

1.8 Research Questions

Following are the research questions derived from the literature, considering the

research gap:

Q1: How load balancing and makespan can be improved for efficient task schedul-

ing in cloud computing?
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Q2: How faster convergence can be achieved in the area of task scheduling?

Q3: What is the effect of fusion of heuristic and meta-heuristic for task scheduling

in cloud computing?

1.9 Purpose

The existing heuristic and meta-heuristic techniques have given solutions to this

problem for better task scheduling and there is further space of improvement

[4, 14, 27–29, 65, 71–73]. The problem is that the cloud jobs are becoming more

complex and the size of jobs is increasing in terms of millions of instructions. The

focus of this research is to find an optimal mapping of cloud tasks to VMs, while

considering that the hardware resources are limited, and they must not be wasted

even for few seconds.

The genetic and symbiotic organism search algorithms have potential to achieve

the good task scheduling [5, 14] as an optimization problem. Their advantages

can be combined to overcome the vulnerabilities of these techniques and other

approaches. This research provides mechanism of combining the benefits of these

two algorithms with proper structuring and tuning of parameters. The meta-

heuristic adopted to a problem has to be properly tuned for making good balance

between exploration and exploitation. This research briefs the optimal settings to

balance exploration and exploitation for getting good results of task scheduling

optimization.

1.10 Scope

This research is intended to facilitate the efficient use of cloud resources which

would be helpful to cloud service providers and the cloud users to better meet

their requirements. This research work provides necessary guideline to improve

task scheduling using hybrid meta-heuristic approach. The parameter tuning and
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hybridization study of metaheuristic provided in this research can also be adopted

to other problem domains. The benefits of meta-heuristic through comparison

of performance metrics listed in QoS are demonstrated in this research. QoS

parameter for clients focused in this study is makespan and for cloud providers

are both resource utilization and makespan. Improving QoS of task scheduling

with optimization can lead to better results by exploiting and exploring the search

space of possible solutions in cloud computing.

1.11 Significance of Solution

This research work contributes in efficiently reducing the makespan and balancing

the workload among heterogeneous cloud resources in cloud computing. The con-

vergence of genetic based scheduler is enhanced which can be embraced in other

applications of genetic algorithm.

1.12 Dissertation Organization

The remaining sections of the dissertation are organized in the following pat-

tern. Chapter no.2 describes the review of the relevant literature. The procedures

adopted by other researches and the shortcomings are highlighted which led to

the presented solution. In chapter no.3 the steps to reach to the presented solu-

tions are portrayed. The methodology and architecture of the presented solution

alongside the dataset are exhaustively described. Chapter no.4 demonstrates the

detailed experimentation conducted for evaluating the presented work. Whereas

the chapter no. 5 provides the conclusion and directions for future study related

to this research.



Chapter 2

Literature Review

This chapter provides the literature study of related work and highlights some key

issues that led to the proposed solution. Lot of techniques have been employed

for independent task scheduling in the domain of cloud computing [2, 4, 5, 7, 8,

10, 11, 14–30, 32–34, 36–41, 44, 52–60, 65–67, 69, 71–88]. The literature review

chapter thoroughly analyzes all possible related techniques which can be heuristic,

metaheuristic or hybrid.

2.1 Heuristics

He et al. in [74], introduced an improved min-min algorithm for task scheduling

in cloud, based on QoS like completion time, reliability and cost. It requires cloud

resources to provide its QoS priorities. Scheduling is divided in high and low QoS

queues. The low QoS queue is scheduled after the high QoS queue. The min-min

algorithm [15] improves the makespan for small sized jobs. The idea is to assign

smallest job to fastest VM in order to reduce the maximum completion time, in

this way the task with minimum execution time is mapped to a fastest resource

[15, 16, 24, 41, 74]. The load balancing is not under consideration during scheduling

of tasks. Therefore, the load is imbalanced, especially in case when the jobs are

of very large sizes. The LBMM in [16] uses the traditional min-min algorithm in

13
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first phase then the jobs of overloaded VM are remapped to underloaded VM in

second phase. The overloaded VM is chosen based on makespan. The task with

minimum execution time in overloaded VM is selected. The maximum execution

time of that task is calculated against each VM and if it is less on any VM the

task is shifted to that VM.

In [80] a max-min task scheduler was proposed to improve the resource utilization

and response time. The max-min algorithm assigns the largest task to VM where

task has minimum execution time to improve makespan but max-min performs well

only when large size tasks are much in number. In [84] an improved max-min was

proposed. According to author the execution and waiting time are further reduced

through changing the selection criteria of completion time with the execution time.

An enhanced max- min was proposed in [83]. In enhanced version the selection

criteria differs from the traditional max-min in a way that the largest job is mapped

to VM which has nearest to minimum completion time. The enhanced version is

evaluated on a very small set of jobs.

An attempt to improve the min-min for resource utilization and makespan was

made in [41]. After the execution of min-min the balancer operations are triggered

in the proposed technique. In the balancing heuristic the tasks are swapped in

resources where they produce minimum execution time. Author in [41] tried to

achieve the load balancing using the minimization of makespan which can be

further improved. The heuristic for balancing takes too much time in worst case

because search space is huge, and the proposed technique continues unless the load

balancing condition is met. In [88] the performance of min-min and max-min was

analyzed, and it was found that max-min performs better when large size tasks are

much in number whereas for the opposite scenario min-min outperforms [80, 88].

ETSA [22] a heuristic was presented to improve the energy consumption and

makespan. It considers the computation time of tasks and utilization for map-

ping. The energy consumption is targeted by improving the resource utilization.

The ETSA consists of three phases. The first phase is the estimation phase in

which the computation time based on expected time to complete and resource
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busy time are calculated. In second phase which is of normalization and selection

of minimum value of objective. The third phase assigns the task to VM producing

minimum value just like balancing in [7, 41]. As the utilization is computed merely

based on the time the resource was busy. Therefore, this criteria of improving re-

source utilization does not specify the necessary details which can contribute in

optimal resource utilization.

In [77] two statistical based heuristics were proposed called as HMADF and

Suffrage-HMADF. HMADF computes the mean absolute deviation of each tasks.

Then the task having highest mean deviation is assigned to VM having earliest

completion time. This is how small and large jobs are mapped earlier, to im-

prove the execution time. The suffrage-HMADF considers the QoS information

of tasks and rank them as high or low QoS tasks. The high QoS are mapped

with the suffrage and the low QoS are mapped with HMADF. The large jobs are

those which deviates from the mean, but this is problematic when the dataset is

left or right skewed. It generates imbalance of resource utilization. The suffrage

algorithm based on execution time (ETSA) was proposed in [37] to improve the

execution time as well as the resource utilization. The execution and completion

times are computed. The suffrage value for both completion and execution time

is calculated by subtracting first minimum from the second. The task is assigned

to VM based on the minimum suffrage value between execution and completion

time. The ETSA does not have mechanism to assist the load balancing. Although

execution time can improve the load balancing but not to a significant extent.

In [36] cloudlet scheduler based on travelling salesman approach (TSACS) was pro-

posed. TSACS converts the task scheduler to TSP domain before the application

of TSP based solution. TSACS has three different phases. The first phase is the

clustering phase in which the large size problem is converted to small sized clusters

to reduce the computational complexity of the problem. The number of clusters

is equal to the number of VMs. Then in the second phase problem is converted to

TSP. In third phase known as the assignment phase, the nearest neighbor approach

is deployed to assign jobs to VMs. The nearest neighbor technique begins with

the random city and keep visiting nearest cities till all are visited. The TSACS
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is supposed to improve the load balancing but there is no direct information of

resources or steps involved in balancing. Therefore, TSACS emits imbalanced load

among the resources.

Panda in [33], proposed a probabilistic load balancing (PLB) scheduling algorithm

to schedule the tasks while considering the load on available VMs. The PLB is a

two-phase technique. It begins with the sorting of task in non-decreasing order.

The initial load of each VM is calculated. In the second phase the minimum initial

load is chosen to map the successive task to that VM followed by the updating

the initial load. Even if the load is balanced the execution time may still improve

for the same value of load balancing but the PLB does not consider the execution

time of tasks. Whereas, PLB improves the load balancing. The PLB approach

benefits the underloaded VM by mapping more tasks to it. But there is nothing

done for the overloaded VM to reduce the load.

RALBA [7] calculates the share of virtual machines based on the total size of jobs

and available computational power of the virtual machines. It has two schedulers

namely, fill scheduler and spill scheduler. The fill scheduler selects the largest VM

on the basis of largest VM share and makes a pool of possible jobs that can be

mapped to that VM. The job sizes should be less than or equal to the largest VM

share. Then the largest job is mapped to the VM with largest VM share and the

VM share of that VM is updated. The next largest VM share is selected and the

spill scheduler continues until there is no smallest cloudlet less than the smallest

VM share. The remaining cloudlets are mapped through the spill scheduler. Spill

scheduler assigns jobs to VMs based on Earliest Finishing Time calculated against

each VM. RALBA has proven to be better in load balancing and makespan as

compared to RASA, TASA, and other heuristic techniques [7, 35]. But results of

RALBA are not compared with any meta-heuristic approach. Since the cloudlets

are heterogeneous and there could be many possible assignments based on VM

share. RALBA is not doing optimization and other possible assignments on VM

share are not checked in RALBA. Therefore, there is still room of improvement

in load balancing and also the load balancing is not so good when batch size is
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small and standard deviation among job sizes is less. The load balancing does not

always guarantee good makespan and makespan can be further reduced.

2.2 Meta-Heuristics

In [73] an improved PSO (IPSO) was proposed. The proposed technique deploys

simulated annealing to enhance the convergence of PSO. To further improve the

optimization and convergence the SA updates the particles, and this happens in

every iteration. The two optimization approaches work in combination and PSO

based particles are updated so there are chances that particles will loss the prop-

erties of PSO after the modification. The multi-objective PSO (MOPSO) was

proposed in [82] to minimize the execution time and cost. The SPV rule is used in

MOPSO to convert discrete values from continuous in PSO. An archive is main-

tained to list the dominated and non-dominated particles. The performance of

MOPSO is evaluated with a very small set of tasks. Fahimeh in [60] proposed a

multi-objective PSO to improve time and cost of execution. The same objectives

were considered in [82]. An archive of particles is maintained where the dominat-

ing ones are deleted, and non-dominating are added. Then they are sorted based

on the objectives they are improving. Out of those sorted, best particle based on

fitness are chosen to be a global best. The load balancing is not under consider-

ation. Hybrid PSO algorithm was proposed in [57] having Differential Evolution

algorithm. DE is used to update the velocity in standard PSO. This helps to avoid

premature convergence in PSO. The particle position is only updated when it pro-

duces better fitness. The fitness is defined on the base of makespan and resource

utilization. The performance is evaluated on a very small dataset.

The [67] suggests that the merger of SJFP heuristic in PSO improves the per-

formance of PSO. The SJFP initializes the population of PSO. Unlike [57, 73]

a heuristic is used in [67] but only for the initialization phase. The proposed

technique outperforms the standard GA and PSO for makespan as fitness func-

tion. Whereas no load balancing mechanism is deployed in it. Ageena in [59]
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proposed an Integer PSO with the objective to minimize cost and makespan. The

same objectives were considered in [60, 82]. The standard PSO is transformed to

produce integer results by using modulus operation. The load balancing is not

targeted in this work which results in imbalance distribution of workload among

the VMs. The improved PSO was presented in [79] to enhance the utilization of

resources. According to the author the traditional PSO suffers slow convergence

in task scheduling. The simulated annealing was combined with PSO to take ad-

vantage of strengths of both techniques. The traditional PSO works with personal

best but in this improved version the personal worst was introduced as a param-

eter to reach to a better solution quickly. The global best is found with the SA

approach in the main PSO algorithm. SA was also deployed in [73] to improve the

convergence and the proposed technique speeds up the convergence. It has been

generally observed that speeding up the convergence often creates imbalance in the

local and global search. The results are not compared on the basis of makespan

or resource utilization as claimed and also the fitness function is not defined as

multi-objective approach.

Another PSO based scheduler was proposed in [78], where the fitness is composed

of power, storage and processing time. According to the author the time taken by

the largest cloudlet is reduced to balance the load. However it does not consider ac-

tual load and hence there are chances of improvement. Greedy PSO was proposed

in [39], with the intention to have better convergence, global search and balance

among resources. The slow convergence of PSO is also reported in [66, 73, 79]

which suggested the merger of meta-heuristic to improve it. The greedy approach

deploys the load balancing by mapping task to VM with less workload. The pop-

ulation in PSO is initialized with the greedy technique. The proposed technique

may converge too much fast due to guidance of initial population with heuristic,

which can lead to premature convergence. Later MDAPSO was proposed in [66]

which is an enhancement of DAPSO by merging Cuckoo Search algorithm. The

reason for the merger of two algorithms is to improve the convergence and global

search capabilities. According to the author when inertia weight reduces the ex-

ploration is compromised therefore CS has been merged. CS works after the final
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iteration of DAPSO. The two optimization techniques are fully functional, making

the technique computationally expensive. CPSO in [65] was proposed, having the

combination of particle swarm optimization PSO and cuckoo search CS technique.

CS was also deployed in [66]. The objectives considered in CPSO are makespan,

budget cost and deadline violation. The CS is inspired by the behavior of cuckoos

laying egg in the randomly chosen nest of host. The host dispose of the egg on

finding them or leaves the nest. Here egg is the representation of a solution. To

find the location the levy’s flight known as random walk is chosen. Both PSO and

CS are fully functional to find new solutions then the two newly formed solutions

are transformed to one hybrid solution. The CPSO does not consider the load

balancing as an objective of optimization.

In [40], LBMPSO the load balancing mutation algorithm based on PSO was pro-

posed. The algorithm addresses the issues of VM where task are unallocated,

multi-allocation of same task and slow convergence in PSO. The performance of

LBMPSO was evaluated on a very small dataset. In [30] a PSO based task sched-

uler was proposed. The proposed technique deploys the load balancing mechanism

in the PSO to improve the resource utilization and makepan. The load balancing

is achieved using the honeybee model. The overloading is paralleled with getting

honey from empty source. The standard deviation represents the load balancing of

VM. The resource usage pattern is observed to move the tasks in overloaded VM

to underloaded. The resource utilization mechanism in the proposed technique

uses the information of processing time which does not consider the actual power.

Therefore, the load balancing is not significantly good.

Zhao in [58] proposed PSO with inertia weight to improve the makespan. The

fitness is defined on the basis of cost and time, whereas, load balancing is not con-

sidered. The adaptive weight is introduced to balance the global and local search

of the particles. Thanaa in [10] introduced Binary LB-PSOGSA for load balancing,

which is the combination of two algorithms, PSO and GSA. In PSO the particles

communicate with each other to reach to global optimum and in each iteration

the particles update their local best and overall global best positions and GSA has

masses treated as search agents. The greater masses are considered better than
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the others. The velocity of particles is updated using the combination of PSO and

GSA. This combines the exploration capabilities of GSA in the exploitation capa-

bilities of PSO. According to [66] there is need to improve the search capabilities

of standard PSO and therefore a mechanism of merging techniques was proposed

just like [10, 73, 79]. The binary encoding is used for representation of particles of

PSO. The execution time is calculated as an objective function. Load balancing is

not the objective function but PSOGSA claims to improve the balancing of load

among VMs.

A PSO with inertia weight strategy was proposed in [76]. An attempt to improve

inertia weight was also made in [58] to improve the makespan. To enhance the

global search ability of PSO dynamic inertia weight was introduced by adopt-

ing the logarithmic decreasing approach. The mentioned technique improves the

makespan when compared with ABC, DA and GSA. The inertia weight reduces

over the iteration to assist the exploration of much search space. The logarith-

mic inertia strategy is the key factor in adding the exploration capabilities in the

PSO. The logarithmic inertia strategy is compared with other four inertia weight

strategies and comparatively logarithmic strategy outperforms in terms of conver-

gence speed. The performance is evaluated on a very small dataset which may

not be the right choice to exhibit the actual working of the technique. There is

no consideration of load balancing, resulting in bad utilization of resources. An

Integer-PSO was proposed in [25], with the objective to improve the load balanc-

ing and convergence of PSO. To retain the properties of standard PSO producing

continuous values a mechanism to convert continuous values to integer for PSO is

introduced. Same type of mechanism to convert SOS to DSOS was presented in

[5]. Later a function is invoked to eradicate duplicate assignment of tasks. There

is no mechanism supporting the load balancing in the objective function. There-

fore, it is inferred that the Integer-PSO generates imbalance among the resources

as load balancing is not processed considering the power of VM. In [34], Najme

proposed a hybrid FMPSO technique to improve the throughput and load balanc-

ing. The FMPSO technique uses the fuzzy theory and modified PSO algorithm.
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Four different velocity updating methods are opted in FMPSO. The initial popu-

lation is generated using SJFP technique. The roulette wheel selection operation

of evolutionary algorithm is used for introducing diversity in the selection of VM

in SJFP. Then the global search capabilities of crossover and mutation operations

of evolutionary algorithm are added to escape from trapping in local optima. The

particles generated using both crossover and mutation are passed to PSO. The idea

of this diversification mechanism is to overcome the shortcomings of PSO. Fuzzy

theory is used to evaluate the fitness of particles. Due to inculcation of SJFP in

initialization phase the solutions are more biased toward the particles supporting

the fast execution of shortest jobs. The convergence of FMPSO improves due to

global search abilities.

A bee life algorithm (BLA) was proposed in [85] to efficiently reduce the makespan

when compared with GA. BLA is a nature inspired algorithm having the behaviors

of food search and reproduction. In reproduction the crossover and mutation are

applied like one applied in [52]. After the reproduction operation the bees search

the neighbor regions for food. A greedy approach is introduced for the local

search in BLA. The performance is evaluated on a very small dataset. In [81] an

improved differential evolution-based task scheduler IDEA was proposed. Author

in [81] proposed that hunting behavior of honeybee can balance the load in task

scheduling. Here tasks are removed from the overloaded VM and then assigned to

suitable underloaded VM. The cost model is composed to define the fitness. The

Taguchi model is utilized in IDEA. According to the author the introduction of

mask mutation has contributed in generation of better offspring. The performance

of IDEA is evaluated with two test cases, but no large dataset is employed.

Shaminder in [17] presented an efficient GA. It uses LCFP, SCFP and randomiza-

tion for population initialization. The fitness of chromosome is evaluated based

on execution time. The crossover operation used is multi-point and mutation is

based on swapping of genes. The algorithm improves makespan, but it is evalu-

ated on a small dataset. LAGA [24] uses min-min and max-min in GA to improve

the load balancing. The initial population is generated and has one chromosome

created using min-min and one with max-min to take advantage of both minimum
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execution time and avoiding late execution of large jobs. Rest of the population

is generated using the randomization function. Proportionate selection is used to

choose the parents. The single point crossover is used in LAGA. Total time of

resources is considered in the time load balance model. The fitness is composed

of both makespan and load balance value. The convergence of LAGA improves

due to direction provided by chromosomes created using min-min and max-min

algorithm. Shekhar in [56] presented a modified GA for scheduling independent

tasks. The initial population is generated using enhanced max-min, where largest

task is mapped to VM with smallest computational power, but the selection cri-

teria for enhanced max-min is average execution time. The modified GA works

better in terms of makespan with initial population generated through enhanced

max-min. Tingting in [53], introduced a load balancing based genetic algorithm

named as (JLGA). The initial population is generated following a greedy approach

to reduce cost. Fitness is calculated based on total time including disk I/O and

remote data transmission time. The load variance formulation is used to get better

load balancing. Total time and load variance collectively define the fitness of any

chromosome. Fitness ratio is used to guide the selection process. Furthermore,

adaptive probability of crossover and mutation have been introduced to enhance

diversity in population.

Javanmardi in [55] proposed the Hybrid GA having fuzzy theory. Jobs are as-

signed to resources based on bandwidth and computational power of resources.

Fuzzy theory calculates the fitness, which is also used in crossover operation. The

priority of parameters is defined on the base of fuzzy rules. Two chromosomes are

selected through fuzzy theory and they are used to participate in reproduction of

population. Instead of using the traditional single or multi-point crossover HGA

uses the job length and VM mips as input to the fuzzy system. The genes of

chromosomes are exchanged based on fuzzy output. The performance of HGA is

dependent on the strength of fuzzy rules which may not work with all types of

datasets. The convergence of HGA improves due to inculcation of fuzzy system.

Zhenzhen et al. in [32] proposed a multi-objective GA. The objective function is

designed to have effect of load balancing and completion time of tasks. The share
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of load is not considered while manipulating the balance of load. The static rate

of mutation and crossover are selected to achieve better diversity in consequent

generations of population. Coherent Genetic algorithm (CGA) was presented in

[44] to improve the execution cost and time. The cost is based on execution time

and the amount of data transfer. The fitness value based on the above-mentioned

cost formulation helps to achieve better load balancing. However, load balancing

is not directly involved in the objective function. The performance is evaluated

based on makespan and resource utilization and CGA improves than one of the

improved versions of GA. Safwat in [19] proposed a TS-GA based scheduler in

which fitness is evaluated based on completion time. The tournament selection is

used in which the solutions not selected reserve their seat in the next generation.

The performance of TS-GA is compared with the round robin heuristic which

shows better resource utilization and makespan.

Zarina in [18] presented a RMGO for load balanced scheduling. The RMGO is

combination of three algorithms namely min-min, max-min, and suffrage. These

three algorithms run initially for generating the population. The best particles of

these three algorithms become the input of the genetic algorithm. The makespan

is considered as the objective function of GA and the roulette wheel is used as

selection operation. The algorithm improves makespan and load balancing is not

directly considered in the objective function and while updating the chromosomes

in next generation. Kairong [8] presented an AIGA task scheduler. AIGA in-

troduces adaptive probability of crossover and mutation operations. AIGA does

not consider the load balancing. The position of chromosomes in the population,

number of iterations, population size, fitness of best chromosome and a threshold

value are used to compute the mutation and crossover rate in AIGA. The AIGA

improves in performance as compared to the standard GA. Improved Genetic Al-

gorithm (IGA) was introduced in [23], to maximize the resource utilization. The

resource utilization is focused by monitoring the resources which are idle during

task execution. Initially the jobs are assigned to idle resources until there are no

more idle resources. The remaining jobs are assigned to resources whose expected
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completion time is less. Cost is calculated and used as fitness function. The re-

source utilization for the chromosomes are checked and chromosomes are updated

based on that. The chromosomes are updated based on the resource utilization.

The performance is not evaluated on any large-scale dataset.

In [14], Zhou et al. have proposed modified genetic algorithm (MGGS), which

considers the total completion time of jobs and load balancing. The MGGS takes

less iterations to converge due to the greedy strategy guiding the optimization pro-

cess by updating the chromosomes. The iterations of MGGS take too much time

when the batch size increases. The MGGS uses binary encoding to represent the

candidate solutions. The fitness function is made up of maximum completion time

to achieve minimum completion time for the batch of jobs. Roulette wheel is used

for selection of best particles. The probability of crossover and mutation is defined

using equations. The greedy strategy is used to update all the population in each

iteration. In greedy strategy the total execution time of each VM is calculated.

VMs are sorted according to the execution time and VM with maximum execution

time is selected. The minimum job in that VM list is eliminated and added to

VM with minimum execution time. VM list is updated again according to the ex-

ecution time. This greedy approach continues until VM with minimum execution

time becomes the VM with maximum execution time. In this way the imbalance

is reduced by greedy strategy. The MGGS algorithm achieves good makespan and

load balancing. The algorithm converges very quickly but get trapped in local

minima and it can be further improved. In worst cases the MGGS takes so much

time to balance the load and balancing operation continues until the VM with

minimum execution time becomes the VM with maximum execution time. Too

much guidance to the GA algorithm makes it converge faster but the chromosome

losses their actual properties to better find the optimal solution in the large search

space. The MGGS algorithm is tested on a very small set of jobs and it should be

tested on large-scale dataset to better get the idea how algorithm is performing

with real cloud traces.

In [52] Rekha introduced an ETA-GA based efficient scheduling algorithm. The

algorithm computes the fitness of chromosomes based on total completion time
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and probability of failure. The failure is the network delay occurring among the

network nodes and the fitness is the minimization function. The ETA-GA selects

two chromosomes through the selection of best among the population based on

the fitness value. It means the best chromosome has the maximum probability

of selection to get involved in reproduction operation. Crossover is selected as

multi-point with the constraint of probability. The selection of best in each gener-

ation leads to over exploitation and the algorithm suffers pre-mature convergence.

Here better resource utilization is achieved through minimizing the finishing time.

But the resource information of load balancing is not part of objective function

which leads to poor resource utilization. The Hybrid GA with Ant Colony algo-

rithm (HGA-ACO) was proposed in [54], which is the combination of two different

meta-heuristics. The utility scheduler is used to order the tasks in queue based on

memory and execution time. The output of utility scheduler becomes the input

of HGA-ACO. The best chromosomes are passed to Ant Colony algorithm where

they are transformed using the path. Path is evaluated through response time and

completion time in ACO. The resultant chromosomes get involved in crossover and

mutation phase of GA. The load balancing is not considered as an objective and

the overhead of two meta-heuristic slows down the algorithm. The best particle ob-

tained through GA is used in crossover and mutation after transformation occurred

in ACO phase. Fang in [2], proposed an improved GA encoded in binary format

to better use the good search ability of binary representation. The load balancing

of chromosomes is also calculated. The load balancing is computed through for-

mulation of standard deviation (SD). The SD represents deviation of the expected

time to complete the tasks on computing resources. The fitness value is composed

of total time and load of tasks. The probability of selection of fittest chromosome

for generating offspring is based on proportionate selection to maintain diversity

in the population. The probability of crossover and mutation is adaptive which

changes automatically when fitness among chromosomes is scattered or constant.

The improved GA works better when tasks are much in number. The vector size

grows significantly with the increase in number of jobs. The gene representation

in binary encoding becomes more complex with the increase in jobs. In [38] the
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Imperialist Competitive Algorithm (ICA) was deployed to improve the execution

time of tasks. According to author the ICA has slow convergence speed. There-

fore, to improve the convergence and search of ICA the GA is applied in updating

the new positions. The performance is evaluated on a very small dataset which

is not based on real traces of cloud. Therefore, the technique may have different

behavior on large dataset.

DSOS was proposed [5] a discrete version of SOS to optimize the task scheduling

problem for independent tasks. The initial population consisting of organisms are

generated randomly. Vectors consist of 1xn dimension where each value is the

VM number corresponding to job and ‘n’ represents the number of jobs. Best

organism is selected based on the makespan. Organisms are updated using mutu-

alism, commensalism and parasitism operations. Mutualism mimics the behavior

of symbiosis relation between two organisms where both get mutual benefit from

each other. Commensalism is a relation between organisms where one gets the

benefit and other is neither benefited nor harmed. Parasitism is a relation in

which one organism gets the benefit and other gets harmed. Population consisting

of organisms is updated using the above-mentioned symbiotic operations until the

stopping criteria is met. The best organism with fitness as makespan is selected as

the final mapping scheme. SASOS [38] simulated annealing based SOS was pro-

posed to enhance the SOS algorithm. According to author the acceptance of best

solution leads to fast convergence, but here it is observed that due to selection of

best chances of trapping in local minima increases. The SA is used to enhance the

local search of SOS and to speed up the convergence. The SASOS stimulates the

improvement in makespan and load balancing. The SASOS does not directly in-

corporate any balancing mechanism, hence not contributing to resource utilization.

In [20] an improved hybrid SOS was presented, where the actual SOS algorithm

is lessened, and two more algorithms are combined. The CLS algorithm is used

to improve the convergence and the SA to enhance the exploration. The objective

function is based on resource utilization calculated through maximum and mini-

mum utilization of resources in terms of makespan, whereas the actual load is not



Literature Review 27

considered. The SA is used to update the organisms in mutualism and commen-

salism phases of SOS. The best organism is updated using the CLS algorithm. In

CMSOS [4], the symbiotic organism search algorithm is used with the combination

of chaotic optimization strategy at the initialization phase of SOS. The random se-

quence generation in SOS algorithm is replaced with the chaotic strategy to ensure

more diversity in the population with an idea to improve the global search capabil-

ity of SOS algorithm. The CMSOS improved the makespan and financial cost of

the task scheduling. The initial population is generated using chaotic local search

sequences and in each phase of SOS the chaotic sequences are generated. The

ecosystem for next generation is selected through non-dominated sorting and se-

lection by crowding distance which is the average of the neighboring solutions. As

the chaotic search sequences are used in each generation therefore, the organisms

created using SOS have high probability to be replaced by the chaotic sequences.

Therefore, the organisms having properties of symbiotic relations are more likely

to lose in the proceeding generations of the algorithm. It is not always beneficial

to maintain the diversity. When non-dominating solutions are more than the size

of the ecosystem then the crowding distance is applied to select solutions equal

to size of ecosystem. This causes loss of some local best organisms which may

contribute in the search of global best. The imbalance of workload has no role in

defining the fitness of the solution, resulting in the imbalance distribution of tasks

to VMs.

In [72] the cat swarm optimization algorithm (OTB-CSO) based on Taguchi was

proposed to improve the execution time. The Taguchi optimization uses the or-

thogonal matrix representation. The Taguchi approach is incorporated in CSO to

improve the local search capabilities. In CSO the population comprising of cats

is generated randomly. The fitness is evaluated and then the seeking and tracing

modes are applied accordingly. The seeking mode is for ensuring the global search

having the mutation operation, whereas the tracing mode is for local search. Both

modes in CSO updates the position and velocity of cats. The performance of the

proposed technique is evaluated on a very small dataset and the load balancing is

not considered. The Lion Optimization Algorithm (LOA) was proposed in [29] for
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task scheduling. The LOA is inspired by the behavior of lions exhibiting the mat-

ing, hunting and defense mannerism of lions. The population in LOA is divided

in prides and each pride has some percentage of male and female lions. In this

technique the fitness is based on makespan. The best position achieved in all these

behavioral phases is considered the best solution over the iterations. As the load

balancing is not an objective so therefore the load is imbalance. The performance

of LOA is not evaluated on any realistic dataset.

The WOA scheduler was proposed in [28], and it is based on whale optimization

technique. The WOA was designed to comply the objective of reducing makespan

and cost. The algorithm begins with the assumption that the initial solution is

the best one. The fitness of solutions is computed then the position of surrounding

prey is considered. The search agents revise their positions based on the knowledge

of best position acquired. The WOA technique does not employ any load balancing

mechanism which makes the optimization unenlightened in creating the balance

among resources. In [27] HGDCS was proposed based on gradient descent cuckoo

search. According to the author the cuckoo search (CS) has entities which have

identical search conduct, leading to the discovery of local optima instead of global

optima. Thus, gradient descent (GD) approach is merged with CS to help escape

the local minima in search of optimal solution. The GD helps find the local minima

of a function by moving in the proportional direction of the positive gradient. The

gradient method is applied in the CS optimization to improve the local search

abilities. The HGDCS converges very fast but it does not balance the load among

resources. The local search is greedy which generates imbalance between the local

and global search, resulting in deprived optimization. The CSSA was proposed

in [21]. It is inspired by the chaotic social spider and the foraging process. It

reduces the makespan and improves load balancing. The algorithm begins with

the random population. The search agents (SA) broadcast messages and the

best of which is chosen. The CSSA adopts the chaotic inertia weight in VM

selection process. The load factor parameter is introduced to avoid the selection

of overloaded VM. Finally, the new position of the SA is updated. The CSSA
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supports the assignment of tasks to underloaded VM but it does not consider the

actual computational requirements of VM in process of load balancing.

In [69] a hybrid task scheduler (MSDE) was proposed. The MSDE is based on

improved moth search algorithm having the differential evolution algorithm. The

moth algorithm is inspired by the phototaxis and the levy flight in the nature.

The phototaxis exhibits the exploration capability and the levy flight shows the

exploitation capability. According to the authors the moth search has weak ex-

ploitation ability therefore the differential evolution is embedded in moth search to

aid the exploitation process. The population is divided in two halves in the MSDE

approach, where one half is the representation of phototaxis and the other is of

levy flight. The current solution is updated based on either the moth search algo-

rithm or the differential evolution. The MSDE improves the makespan which is the

fitness criteria in the technique but MSDE does not consider the load balancing of

VMs. In [26] a vocalization behavior of humpback whale optimization algorithm

(VWOA) was proposed. VWOA intended to improve the resource utilization, en-

ergy consumption, and execution cost. The objective function is composed of all

the above-mentioned objectives. The algorithm is inspired by the whale mammal.

It exhibits the behavior of mating of whales. The adult male whale sings in search

of clusters. Then it joins other singing adult males. The secondary escort in the

cluster competes with the major escort to win. The mathematical model is for-

mulated with the distance and trigonometric relations for the defined behavior of

whales. The half iterations assist the exploration while the other half exploita-

tion. The VWOA does not consider the actual computational power of VM in the

balancing of load, which stimulates the imbalance of resources.

Ivana in [71] proposed a hybridized monarch butterfly optimization algorithm for

task scheduling. In this algorithm the population is considered to belong from

two areas called as land 1 and land 2. The operations are performed to produce

offspring which may be discarded or accepted based on the fitness as compared

to their parents. The solution migration phase creates a new solution whereas

the solution adjustment operator introduces both exploitation and exploration ca-

pabilities. To improve the original monarch algorithm a mechanism to discard
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exhaustive solution through ABC metaheuristic is adopted. An additional param-

eter trial is introduced which increments in each iteration. When the solution is

not improved for preset number of iterations, it is considered as exhausted and

being replaced by random sequence. The control parameters of ABC are added to

monarch to avoid the premature convergence and trapping in local minima. By

choosing random sequence instead of discarded solution the algorithm may suffer

slow convergence and it is highly possible that any local good point remains un-

explored due to lack of exploitation. Pradeep in [75], proposed CGSA to improves

the cost, energy consumption and memory usage. CGSA is a hybrid technique hav-

ing combination of cuckoo search (CS) and gravitational search algorithm (GSA).

The candidate solutions are updated first with GSA and then with CS. The best

position of GSA or CS is replaced by the best fitness found between both GSA

and CS. The performance is evaluated on a small dataset. The replacement of

the best position disturbs the properties of one algorithm because best position

particle participates in both techniques.

The Table 2.1 enlightens the strengths and vulnerabilities of some related tech-

niques inferred from the study of researches. The key findings of literature study

are also summarized through the listed research articles.

Table 2.1: State-of-the-art Scheduling Techniques

Techniques Strengths Features Weaknesses

AIGA [8] Improves

makespan.

Adaptive

probability of

crossover and

mutation is

introduced.

1. Load is imbalanced.
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ETA-GA

[52]

Reduces

probability of

failure and

completion

time.

It has

multi-objective

optimization.

1. Converges pre-maturely

due to over exploitation

caused by the selection of

best chromosomes to

participate in population

generation each time.

2. They have not

considered load balancing.

MGGS [14] Improves

makespan and

resource

utilization.

It has Greedy

Strategy to

update vectors.

Roulette wheel

is used as

selection

operator.

1. Evaluated on a very

small dataset.

2. Large number of genes

of each chromosome are

updated, therefore

chromosome loses GA

properties also it is

computationally expensive.

RALBA [7] Improves load

balancing.

Share of each

VM is

calculated based

on power and

size of jobs.

1. Imbalance of resource

utilization increases when

number of jobs reduces.

TS-GA [19] Improves

makespan.

Tournament

selection

operation of GA

is used.

1. Performance is not

compared with other

popular meta-heuristics.

2. Load is imbalanced.

DSOS [5] Reduces

makespan.

Fast

Convergence.

1. Chances of getting

trapped in local minima.

2. Load is not balanced

among resources.
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Multi-

objective

GA [32]

Provides load

balancing and

reduces

makespan.

Two conflicting

objectives are

combined in a

relation to

define fitness as

minimization

function.

1. High probability of

mutation which may lead

to pre-mature convergence.

Hybrid

PSO [57]

Improves

makespan,

resource

utilization and

convergence.

Velocity in PSO

is updated using

Differential

Evolution

algorithm.

1. Performance is not

evaluated on any

large-scale dataset.

Multi-

objective

PSO [82]

Improves time

and cost of

execution.

An archive of

dominating and

non-dominating

particles is

maintained.

1. Fittest particle being

chosen does not meet both

objectives because fitness

function is not

multi-objective.

2. Weak capability of

exploration due to

selection of fittest based on

any of the objective

between the

multi-objectives.

Efficient

GA [17]

Improves

execution time

of jobs.

LCFP and

SCFP are used

parallel to

randomization

for population

initialization.

1. Load balancing is not

considered in the objective

function.

2. Performance is

evaluated on a very small

dataset.
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2.3 Research Gap Analysis

In the literature there are many techniques [5, 8, 17, 19, 52] which have focused

the execution time or makespan as an important parameter for improvement in

task scheduling. Very few techniques have addressed the issue of considering

load balancing [7, 14, 17, 32, 37, 57, 60, 67, 69, 76, 82] while not overlooking

the need for improvement in makespan. However, the finishing time of tasks

is a common measure opted as objective of scheduling and even for the evalua-

tion of performance [5, 7, 14–19, 21, 22, 28, 29, 44, 56, 69, 76]. The heuristic

schedulers do not possess the potential to explore the huge search space and

therefore, meta-heuristics are used. The heuristic based techniques are being

fused with meta-heuristics and this trend has been observed in the following

researches [14, 17, 24]. In meta-heuristic based solutions, the problem of slow

convergence encounters [52]. The convergence speed of meta-heuristic, explo-

ration and exploitation capabilities are deemed in researches [10, 66, 73, 79] to

meet the set objectives of optimization. The genetic algorithm has been exten-

sively applied to schedule tasks [2, 8, 14, 17, 18, 23, 24, 44, 52, 54, 55]. Dif-

ferent improvements are suggested to improve the convergence of meta-heuristics

[14, 20, 24, 25, 27, 34, 38, 52, 55, 57, 66, 71, 76] and GA based meta-heuristic

[14, 24, 52, 55], which can be further enhanced. Some researches have also consid-

ered load balancing but actual information of resources, that is the consideration

of power of VMs and size of jobs, is not focused. Techniques where load balancing

is considered, the way in which the load is balanced matters a lot. Researchers

have devised different ways of balancing the load but VMshare information is not

deployed by any means in meta-heuristics and there is need to have application of

it. To evaluate the performance of schedulers usually small synthetic datasets are

deployed [14, 17, 23, 38, 40, 57, 72, 75, 85] which may not contribute to meticu-

lously assess the performance [89].
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Methodology

This chapter begins with the recap of research problems highlighted in the intro-

ductory chapter. It describes the methodology having problem formulation and

model of the presented solution. The description of datasets with necessary ex-

planation is provided. The reasons and rationales to opt the presented solution

have been described. Examples are provided where applicable to explain the steps

involved in the methodology of presented techniques as well as to prove the state-

ments. The motivation for the selection of algorithms and logical reasoning is

emphasized, which are later backed by extensive experiments in the next chapter.

Below is the recap of research questions which are derived from the analysis of rele-

vant literature. This chapter connects these research questions with the presented

techniques.

1. Improving the makespan and load balancing.

2. Enhancing the convergence speed of GA.

3. Merging heuristic and meta-heuristic for getting the optimal task scheduling.

From the research questions the intention of this research is evident. The main

concern is optimal task scheduling. The scheduling is optimal when it meets

the QoS performance metrics for client and service provider. The two significant

34
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performance measures under consideration are makespan and load balancing. The

makespan and resource utilization are described in Section 3.7.

3.1 Multi-objective Optimization

Lot of techniques have been devised and proposed in the literature [2, 4, 5, 7,

8, 10, 11, 14–30, 32–34, 36–41, 44, 52–60, 65–67, 69, 71–88] for task scheduling

in cloud computing environment. Most techniques address makespan but very

few have concentrated on load balancing, whereas some have not considered both

simultaneously and the impact of that is discussed later. There are variety of

methodologies in the literature for improving these two measures of performance.

In this research load balancing has been used as an important parameter for effi-

cient task scheduling. The load balancing can improve makespan to some extent

but relying only on the makespan cannot guarantee the optimal resource utiliza-

tion. The example given below reveals the need for multi-objective optimization

and the dependency of these two objectives. The unit for the representation of

tasks is Million Instructions (mi) and for power of VM is Million Instructions

Per Second (mips). The formulas used in the example are described later in this

chapter.

Consider there are six heterogeneous tasks and three VMs. Although there are

many possible mappings of these six tasks on three VMs. But consider few of

them to analyze the behavior of makespan and resource utilization. One of the

ways to compute the resource utilization is through the formula of ARUR and the

same is used in the below illustration.

The Table 3.1 shows the specifications of tasks and the Table 3.2 shows the power

specification of VMs used in the example. Table 3.3, 3.4, and 3.5 present solution

1,2 and 3 respectively. Each solution represents the tasks assigned to the respective

VMs and these are three different mappings for the tasks and VMs specified in

Table 3.1 and 3.2.
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Table 3.1: Specifications of Tasks

Task no. 1 2 3 4 5 6
Size 100 mi 200 mi 300 mi 400 mi 500 mi 100 mi

Table 3.2: Power Specification of VMs

VM no. 1 2 3
Power 200 mips 300 mips 100 mips

Table 3.3: Solution no.1

Task no. 1 2 3 4 5 6
Assigned to VM no. 2 3 1 1 2 2

Table 3.4: Solution no.2

Task no. 1 2 3 4 5 6
Assigned to VM no. 2 2 3 1 2 1

Table 3.5: Solution no.3

Task no. 1 2 3 4 5 6
Assigned to VM no. 1 1 1 2 2 3

The Table 3.6 shows the calculations performed against the solutions for makespan

and ARUR. The minimum value of makespan and the maximum value of ARUR

are good. In the mentioned example the makespan of solution no. 2 and 3 is same

but the ARUR is different. So, it means that solution no.2 has better resource

utilization as compared to solution no.3, although the makespan is same. Among

the three solutions the solution no.2 is best as the resource utilization is good and

makespan is good too.

There can be many possible examples to cover all scenarios. The above solutions

represent some of the possibilities. In general, the possibilities that may arise for

the makespan and ARUR values are:

• Two different solutions may have same makespan but different ARUR values.
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• Two different solutions may have same ARUR but different makespan values.

• Two different solutions may have same makespan and ARUR values.

• Two different solutions may have different makespan and different ARUR values.

The general perception is that when makespan is good ARUR is good and vice

versa. But this is not always the case when two solutions are compared, the possi-

bilities are mentioned above. It shows that depending on one factor like makespan

or load balancing for achieving improvement in both is not as good as depending on

both which can lead to much better outcomes. From the computation of makespan

and ARUR of solutions it is inferred that depending on both makespan and load

balancing is much beneficial. There is no point of finding a solution with good

load balancing while having high makespan. Similarly having good makespan with

imbalanced load is not good. Suppose the maximum load balancing achieved by

any technique is 90% but there are different solutions where the load balancing is

maximum. So, in such a case the best solution would be the one where makespan

is minimum for 90% load balancing. This may also happen that the solution ‘A’

having good load balancing as compared to some other solutions B, C, D is not

the solution with minimum makespan. The multi-objective fitness function is used

in the presented work and the notion of relying on multi-objective fitness function

is described in Section 3.3.3 and it is further enlightened there.

Table 3.6: Calculations of Makespan and ARUR

Solutions
Completion Time

Calculation
Makespan
(seconds)

ARUR
(0-1)

Solution no. 1
CTVM1 = 700/200 = 3.5s
CTVM2 = 700/300 = 2.33s
CTVM3 = 200/100 = 2s

3.5 0.74

Solution no. 2
CTVM1 = 500/200 = 2.5s
CTVM2 = 800/300 = 2.66s
CTVM3 = 300/100 = 3s

3 0.9

Solution no. 3
CTVM1 = 600/200 = 3s
CTVM2 = 900/300 = 3s
CTVM3 = 100/100 = 1s

3 0.77
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The problem of scheduling is an optimization problem, therefore multi-objective

optimization is required in which the use of meta-heuristics is common. The

decision of using and choosing meta-heuristic is defined later.

3.2 Scheduling Approach

Before moving to the presented solution for achieving the multi-objective opti-

mization in task scheduling, it is important to know where the presented solution

lies in cloud environment. Scheduling can be at different levels as described earlier

in Section 1.6, but here the focus is on task scheduling. The Figure 3.1 describes

where the presented techniques fit in task scheduling problem of cloud computing.

The working of the algorithms is described later.

The Figure 3.1 shows that the batch of tasks are received, and the necessary inputs

are properly encoded before they are handed over to the schedulers. The cloud

broker receives the mapping which is chosen by the scheduler to map the tasks to

the available resources.

The meta-heuristic based solution can overcome the problems of poor load balanc-

ing and high makespan [2, 14, 24, 32]. Task scheduling is NP hard problem and it

has many possible solutions but reaching to optimal solution is very challenging.

The heuristic and meta-heuristic are described briefly in Section 1.4. Heuristics

are mostly problem dependent, and they cannot have same behavior with different

type of datasets [4, 30]. Meta-heuristics are stochastic in nature and each time

the result may fluctuate to some degree, but they have consistent behavior of ex-

ploring the huge search space regardless of dataset [31]. They have been deployed

successfully for multi-objective optimizations in the literature for task scheduling.

There are many meta-heuristics applied in task scheduling optimization as de-

scribed in the literature review. The GA has good exploration capability [2, 8, 14,

17, 18, 23, 24, 44, 52, 54, 55] and it does not get trapped easily in local minima.

It has lot of parameters and their fine tuning can lead to much better optimal



Methodology 39

CloudletsInternet

Users

Datacenter
1

Datacenter
n

Host Machines Host Machines

......

......

......
VMs

Scheduler

Cloud Broker

Services

mapping

Figure 3.1: Schedulers in Cloud Environment

solution. GA has slow convergence but the probability to find global optima is

high [90]. The presented solution provides two hybrid variants of genetic algorithm

to address the research questions related to fast convergence, load balancing, and

reducing makespan.

The optimization of task scheduling using Genetic Algorithm can improve makespan

in a load balanced way [2, 14]. Makespan may improve without load balancing

but the problem of under and overutilization of resources triggers. Therefore, load

balancing should be one of the prime objectives for optimization.

The possible variants of GA can be following:

1. Hybrid Genetic Algorithm in which hybridization is through heuristic approach

[14, 17, 18, 67, 91]. It has further three possibilities.
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• One is to use heuristic to just initialize the population or as the beginning

point of the GA [17, 18].

• Second is to encode the GA in such a way that it will hold the concept of

heuristic in the representation of chromosomes [91].

• Third is to guide the optimization of GA by updating the chromosomes of

GA using any heuristic [14].

The problem with using heuristic just for initialization is that the GA losses the

properties of solutions being inculcated in the initial few generations of GA. After

few iterations the new generation would have very least effect of the initial popula-

tion because GA is not guided anymore with the heuristic. Encoding GA in such a

way that it will hold the properties of heuristic is more about defining lot of rules

to interpret and guide GA [91]. The third possibility of guiding GA with heuristic

is lot more feasible that the actual algorithm keeps working and the convergence is

guided through any good heuristic. The level of guidance may vary, and it should

also be done in moderation to avoid over exploitation. The presented solution uses

the hybridization of GA through heuristic to guide the solution. This version of

GA is named as Balancer-GA.

2. There are many techniques proposed in the literature where GA is combined

with other meta-heuristics [92, 93]. Hybridizing GA with other meta-heuristic is

also possible but it must be for any specific reason. One reason to hybridize GA

with any other meta-heuristic is to improve the convergence. Though GA has

good optimization capabilities, but it suffers slow convergence [90]. To overcome

this issue hybridization of GA with DSOS is proposed and this version of GA

is named as Symbiotic-GA. The symbiotic organism search algorithm has good

operations which exploit the solutions with reference to the best particle. It makes

the convergence fast. Hence, SGA takes advantage of SOS while not compromising

the benefits of GA.

3. Using pure GA is good but again the convergence is slow, also other param-

eters can be further improved by hybridization [2, 8]. The merger of heuristic is
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additional advantage to the working of pure GA for task scheduling. Therefore,

lot of solutions have been proposed so far to use Hybrid GA. This research also

takes advantage of hybridization and provides two versions of GA for that.

In GA the probability of crossover and mutation plays a vital role in controlling

the exploration and exploitation of the search space of candidate solutions [52].

The search of optimal solution needs to have a good balance between both explo-

ration and exploitation. The adaptive probability is about making decision of the

rate of probability depending on the current situation of population [8]. When

probability of mutation is low initially, the chromosomes start converging towards

better solution, and the moment they are trapped the probability is increased.

The other possibility is to make probability of mutation high initially so the par-

ticles can explore more points and over the time the mutation rate is reduced so

the algorithm can focus on any point and get converged. Throughout the journey

of finding the optimal solution in GA the population suffers with different ups and

downs. Therefore, defining probability requires extensive experimentation and al-

gorithm should decide probability according to the state of the population. The

standard deviation can define how far chromosomes are from each other based on

the fitness value. When chromosomes are far based on fitness value means there

is enough diversity and probability should reduce. Similarly, when chromosomes

are close to each other the diversity should be enforced by introducing more ran-

domness. The Equation 3.9 describes the formulation of SD for rate of probability.

The probability rate of crossover defines how many particles will be reproduced for

the subsequent generations. Survival is about elitism in which some solutions are

moved as it is to the later generations so the good solutions may not lose, and it

serves as a memory for GA. The crossover generates new chromosomes and some

chromosomes copied from the previous generation are considered as elites. The

significance of setting the opted mutation and crossover rate is described later.
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3.3 Genetic Algorithm

3.3.1 Problem Encoding

The GA needs to have proper encoding of problem before compiling its evolu-

tionary operators. There are two basic encoding of GA used in the literature for

task scheduling problem. One is to use binary encoding of vectors and other is to

use the discrete encoding. The chromosomes in GA represent the solutions and

therefore, they should represent appropriate mapping of tasks to VMs.

The discrete encoding is also known as real number encoding. The chromosomes

in discrete encoding are represented as vector of 1 × n, where n is the number

of tasks. The vector representation is expressed in Table 3.8. Here each gene of

chromosome represents the VM number where the corresponding task is mapped.

It is not convenient to make vector of n such that n represents number of VMs

because there can be more than one tasks mapped to one VM and in such way

the constraints to avoid remapping of tasks need to be employed.

Table 3.7: Discrete Encoded Chromosome

Task
no.1

Task
no.2

Task
no.3

. . . Task
no.n-2

Task
no.n-1

Task no.n

VM VM VM VM VM VM VM

The other way to encode GA is using the binary scheme to represent mapping.

There are two possible ways in the binary encoding. 1) The binary encoding has

vectors of 1 × n dimension [14]. Here n represents the number of tasks. In the

mentioned scheme each gene is composed of multiple alleles which is a string of

binary bits representing VM number. 2) In second way of binary representation

the vector has m × n dimensions, where m represents number of VMs and n

number of tasks as demonstrated in Table 3.8. The vector is multi-dimensional,

and each row represents mapping of tasks to respective VM. The bit at any VM

turns on while other remain off and it shows mapping of task to VM and there is

no repetition. The later binary approach is less common in the literature.
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Out of all described encoding schemes the discrete number encoding is the simplest

and it has been used extensively in the literature. The discrete number encoding is

used in both versions of presented GA. The GA begins with random population of

n chromosomes and then the fitness of each chromosome is computed using the de-

fined fitness function. In each generation based on some criteria the chromosomes

are selected for reproduction operation. The new population of size n is generated

using the crossover and mutation operations. The crossover is responsible to ex-

ploit the best chromosome in the search space and it also ensures the diversity to

some extent. The mutation is responsible for the introduction of diversity in the

population.

The initialization phase, selection operation, parameter tuning, fitness function,

crossover and mutation opted for the presented techniques are defined below and

these are same for both versions of presented techniques. The specific differences

of both version with their benefits in achieving the solution are defined later in

this chapter.

3.3.2 Initialization

There are many possible ways to initialize the population of GA. The main concern

in this phase is to ensure enough diversity in the population such that there would

be no over exploitation in the consequent iterations of GA. Therefore, usually

GA is initialized with random values. As the presented technique encodes GA

with discrete values in which the value represents the VM number that is why

population of ‘n’ chromosomes is generated. The values of genes in chromosomes

depend on the number of VMs in the dataset specification. Let us say, there are

three VMs and six tasks using the same example mentioned in Section 3.1. The

initialization phase generates random values in between 1 and maximum number

of VM. Let ‘A’ is a randomly generated chromosome A= {1,2,1,2,1,1}.

The term job or task can be used interchangeably. The above vector is a chromo-

some which shows that the first job is mapped to VM number 1, the second job
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is mapped to VM number 2 and so on. Each value is a VM number and in terms

of GA it is known as gene of chromosome. The value of gene cannot exceed 3

because there are only three VMs in the example under consideration. The above

chromosome shows that there is no job mapped to VM number 3. On the other

hand, the VM number 1 has 4 jobs. Regardless the power of VM or the length

of job the initialization phase builds the chromosomes, each representing a map-

ping scheme. The number of chromosomes is known as the population size and

it depends on the problem and need. In the presented technique the population

of 120 chromosomes is used to ensure that huge possibilities of solutions can be

generated and manipulated later. Hence it is helpful in exploring the huge search

space. When population size is too large the GA takes lot of time, but it intro-

duces more diversity in the population. On the other hand, when population size

is too small it may force the GA to converge prematurely because the diversity in

the population is compromised. With too small population size the computations

does not take much time but lot of iterations are required to get a better solution

which may not be so good. So, there should be a balance between the too small

and large population size, and it depends on the problem. Normally, the popula-

tion size is set with the experimentation and in the presented technique it is set

to 120.

3.3.3 Fitness Function

The fitness of every chromosome is a measure to evaluate the worth of any solu-

tion and each chromosome is a solution just like solutions presented in example in

Section 3.1. The solution in this problem defines a mapping of tasks to VMs. The

fitness function can be single or multi- objective. In the presented technique the

fitness is based on multi-objectives namely the makespan and load balancing. In

the literature there are many different ways to balance the load and to calculate

the resource utilization. Calculating the resource utilization in the fitness func-

tion can be further improved by using the information of percentage of VM share

used. Experimentally and logically it gives much better idea to evaluate a solution
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through such fitness value and hence the workload can be balanced knowing the

right information. The composition of fitness function is based on both makespan

and load balancing information and it is essential because according to set objec-

tives the makespan should improve but in load balanced way. The computation

of fitness function is presented in algorithm 1.

Makespan is the finishing time of batch of jobs. The jobs are mapped on dif-

ferent VMs with different computational powers. Therefore, the makespan value

depends on the completion time of assigned jobs on any VM. The VMs are working

in parallel that is why the makespan value is the maximum completion time of

running VMs. The makespan is calculated using the formula in Equation 3.12 and

3.13, and sample calculation is demonstrated using the chromosome represented

in example shown above.

Using the above-mentioned equations, the completion time of VM number ‘j’ is

computed by adding the job size in million instructions of jobs number ‘i’ that are

mapped to VM number ‘j’. The sum of job size is divided by the total power of

that VM. The Map[i,j] is a variable of Boolean type whose values depend on the

mapping of job number ‘i’ to VM number ‘j’. The Map[i,j] vector is exemplified

in Table 3.8.

Table 3.8: Binary Encoded Chromosome

Job1 Job2 Job3 Job4 Job5 Job6
VM1 0 0 1 1 0 0
VM2 1 0 0 0 1 1
VM3 0 1 0 0 0 0

The power of VMs and Job sizes are described already in example in Section 3.1.

To find the makespan of solution number 1 in example, first the completion time

of all three VMs is calculated. The computation is shown:

CTVM1 = 100×0+200×0+300×1+400×1+500×0+100×0
200

= 700
200

= 3.5

CTVM2 = 100×1+200×0+300×0+400×0+500×1+100×1
300

= 700
300

= 2.33
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CTVM3 = 100×0+200×1+300×0+400×0+500×0+100×0
100

= 200
100

= 2

makespan = max (3.5, 2.33, 2) = 3.5

Makespan is one of the objectives in both version of the GA. The second objective

is load-balancing and the formula of finding load balancing is formulated with the

notion of using the percentage of share used.

The value of load balancing is calculated with the help of Equations 3.1 to 3.7. It

describes the total VM share used based on the computational power of VM and

the total size of batch of jobs in million instructions.

ShareRatiovmj
=

VM j.mips∑n
j=1 VMj.mips

(3.1)

The ShareRatiovmj
is used to find the percentage of share of each VM, depending

on the power of VM. When there are ‘n’ number of VMs then the load of each

VM depends on the total available power of the VMs to make balance of load

among VMs. Therefore, the power of each VM in million instructions per second

is divided by the total power of VMs means the total million instructions per

second that is the available power of VMs. The value of ShareRatiovmj
is between

0 <= ShareRatiovmj
<= 1, where ‘0’ represents no workload and ‘1’ represents

100 percent workload that should be mapped to any VM. In this way the amount

of workload to be mapped for perfect balance is assessed and mapping can be

defined such that load would not exceed or fall short.

VMSharej = (
m∑
i=1

cloudlets)× ShareRatiovmj (3.2)

To compute the exact amount of million instructions that should be mapped on

any VM, the size of jobs available in the batch are added and then multiplied by

the ShareRatiovmj. This provides the total size of jobs in million instructions to

be mapped on VM j. In this the VM having any percentage of power share is
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assessed to have no more million instructions than the computed share for that

VM.

The share used by any VM is calculated against the chromosomes of GA using the

Equations 3.3 to 3.7. The share used is based on the million instructions mapped

on the VM in the form of jobs. The size of all jobs ‘i’ is summed such that job ‘i’

is mapped to VM ‘j’ to find the share used by that VM.

ShareUsedj =
n∑

i=1

(jobsizei ×Map[i, j]) (3.3)

PSUj =
ShareUsedj
VMSharej

× 100 (3.4)

The percentage of share used (PSU) is defined to be a measure which is computed

against chromosomes generated in GA. It provides the information about how

much percentage of share is used with the mapping specified by the chromosome.

When PSU is less than the share of any VM, the value of PSU would be less than

100 and it means the VM is underutilized. Similarly, when PSU is greater than

100 means the VM is overutilized. The Equation no. 3.5 and 3.6 are used to scale

the PSU value between 0 to 1.

if PSUj ≤ 100,
PSUj

100
(3.5)

if PSUj > 100,
100− (PSUj − 100)

100
(3.6)

AvgPSU = 1−
∑n

j=1 PSUj

n
(3.7)

The average PSU in Equation no. 3.7 is the value of load balancing factor and it

is between 0 and 1, where 1 represents the minimum load balance and 0 represents

the maximum load balance. The objective function in both versions of presented
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GA utilizes the value of makespan and load balancing. The objective function is

defined to be a minimization function having two different factors where makespan

is a minimization function, and load balancing is maximization function. Hence,

the maximization function of load balancing is transformed to minimization by

subtraction from 1, to make it consistent with the minimization function.

The two objectives are combined in a relation which is calculated using the Equa-

tion 3.8 as a minimization function. The objective function is named as load

balancer as it is contributing in the balancing of load while also considering the

minimization of makespan. There may be many possible solutions where load bal-

ancing is same but makespan is different as already discussed in the possibilities de-

fined in Section 3.1. On improving the load balancing it is possible that makespan

does not change or even increase. To effectively optimize multi-objectives both

makespan and ARUR are considered and combined through addition. Addition

represents that a good solution would be the one having minimum makespan and

for that minimum makespan value the load balancing should be good. For exam-

ple, if the fitness value is 30.5 and 30.2, the solution having 30.2 fitness value is

better. If two solutions have fitness values 30.1 and 29.2 then 30.1 would not be

considered as the load balancing is good but makespan is not good. So, the fitness

function will give priority to the solution producing minimum makespan and good

load balancing for that makespan. Load balancing defines that how much size of

tasks should be mapped on any VM but which task to be mapped is not defined by

the load balancing. The GA is used because of huge search space of task schedul-

ing problem and there are many possible solutions, but GA works on the solutions

equal to the size of population to find optimal solution. The chromosomes of GA

represent mapping where each VM gets a pool of tasks. Load balancing in the

fitness function is achieved through considering the VM share of each VM and

the pool of tasks assigned to any VM should not exceed the limit of share of each

VM. It is still possible that even with good load balancing the makespan may

not be good as compared to any other solution or chromosome. Logically there

is no advantage of load balancing when tasks are taking much time in execution.

Here it is to be noticed that the selection of solution with good makespan and
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then considering the load can ultimately lead to a good solution with better load

balancing as well.

load balancer (x) = makespan + AvgPSU (3.8)

The calculation of makespan is already demonstrated with an example earlier and

the computation of AvgPSU for the solution no.1 is explained below using the same

details mentioned in example in Section 3.1.

In example there are three VMs so ShareRatio computation for all three VMs is

as follows:

ShareRatiovm1 = 200
200+300+100

= 200
600

= 0.34

ShareRatiovm2 = 300
200+300+100

= 300
600

= 0.5

ShareRatiovm3 = 100
200+300+100

= 100
600

= 0.16

The amount of workload that each VM should have is given by VMSharej and it

is computed as follows:

VMShare1 = (100 + 200 + 300 + 400 + 500 + 100)× 0.34 = 544

VMShare2 = (100 + 200 + 300 + 400 + 500 + 100)× 0.5 = 800

VMShare3 = (100 + 200 + 300 + 400 + 500 + 100)× 0.16 = 256

Adding all three VMShare values we get 1600 which is the total size of batch of

jobs. It is evident that according to the power of each VM the workload that VM

should get for perfect balance is the value of VMShare. The mapping in form of

chromosomes generated using GA is evaluated for fitness value using the above

shown mechanism of computing the overload and underload. From the mapping

defined in solution no.1 of the example the PSU value for each VM is calculated.

ShareUsed1 = 100× 0 + 200× 0 + 300× 1 + 400× 1 + 500× 0 + 100× 0 = 700

ShareUsed2 = 100× 1 + 200× 0 + 300× 0 + 400× 0 + 500× 1 + 100× 1 = 700
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ShareUsed3 = 100× 0 + 200× 1 + 300× 0 + 400× 0 + 500× 0 + 100× 0 = 200

The VM1 in example handles 700 (mi) which is more than its share, where VM2

and VM3 fall short in utilization of share for mapping defined by solution no. 1.

The computation of PSU is expressed below.

PSU1 = 700
544
× 100 = 128.67

PSU2 = 700
800
× 100 = 87.5

PSU3 = 200
256
× 100 = 78.125

After scaling using Equation 3.5 and 3.6 the value of PSU is as follows:

PSU1 = 0.713

PSU2 = 0.875

PSU3 = 0.781

The PSU value for all three VM is scaled between 0 to 1. Both over and under-

utilization is converted to a same scale.

AvgPSU = 1− 0.713+0.875+0.781
3

= 1− 2.369
3

= 1− 0.78 = 0.22

The AvgPSU is converted to minimization value in which 0 is best and 1 is worst.

After combining both values in a relation of objective function the final fitness

value of solution no.1 is as shown below.

load balancer(x) = 3.5 + 0.22 = 3.72

The objective function with multiple objectives can be combined in number of

ways. Combining makespan and AvgPSU factors which are both minimization

function in an addition relation, gives enough information for multi-objective op-

timization. Over the iterations in GA the chromosomes are updated and makespan

value is reduced. At a certain stage the makespan value no longer improves but

due to the load balancing value in the objective function it is possible to select the

best chromosome with minimum makespan and maximum resource utilization.



Methodology 51

Algorithm 1 Fitness

Input: Population[xi]
Output: load balancer[xi]

1: procedure FitnessAlgorithm
2: SizePopulation← size(Population[ ])
3: JOBsum← 0
4: VMsum← 0
5: AvgPSU ← 0
6: for i← 1 to Job[ ] do
7: JOBsum← JOBsum + Job[xi]
8: end for
9: for i← 1 to V M [ ] do

10: VMsum← VMsum + VM [xi]
11: end for
12: for i← 1 to V M [ ] do
13: VMShare← VM [xi]/VMsum× JOBsum
14: end for
15: for i← 1 to SizePopulation do
16: VMmakespan[ ]← 0
17: for j ← 1 to Gene[ ] do
18: VMmakespan[Gene[xj]]← VMmakespan[Gene[xj]]+

jobsize[xj]
19: end for
20: for k ← 1 to V M [ ] do
21: value← VMmakespan[k]/VMShare[k]× 100
22: if value <= 100 then
23: PSU [k]← value/100
24: else
25: PSU [k]← (100− (value− 100))/100
26: end if
27: AvgPSU ← AvgPSU + PSU [k]
28: VMmakespan[k]← VMmakespan[k]/Power of VM [k]
29: end for
30: AvgPSU ← 1− AvgPSU
31: load balancer[xi]←Max(VMmakespan[ ]) + AvgPSU
32: end for
33: end procedure
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3.3.4 Selection Operation

In GA the selection of best chromosomes leads to improvement in the fitness value.

There are many possible strategies for the selection of chromosomes. The selected

chromosomes participate in the evolutionary reproduction operations which are

described later. The selection of parents is based on the fitness value obtained

from the fitness function. In both versions of GA described later, the fitness is

a minimization function. Therefore, the chromosomes having the minimum value

can be considered as the best. It is not always good to select chromosome with

the best fitness value because it can lead to over exploitation. The selection

operator for the selection of parents in GA is responsible for selection such that

the diversity is maintained, and population does not converge prematurely. In

the literature [2, 8, 14, 17, 18, 23, 24, 44, 52, 54, 55] there are different selection

operators used in GA and each have their own strengths and weaknesses. But

they are chosen according to the problem and their implementation also vary.

One of the operators that has been used to ensure diversity in the population is

the proportionate selection operator. The mechanism of proportionate selection

and rationale for selection are described below.

The proportionate selection operator exhibits the behavior of a roulette wheel spin.

The proportion of fitness value is considered to have the probability of selection of

chromosomes. The chromosomes having good fitness value have high proportion

and therefore they can be selected more than other chromosomes for mating. In

this way the fittest chromosome is not always selected, and other chromosomes

can also get the chance. It is possible that the selection of other chromosomes

which are not best, may introduce more diversity in the population. On the other

hand, the selection of any best chromosome each time for some generations may

lead to over exploitation in population.

The fitness value of chromosomes can be scaled to fit in a circular wheel. The

wheel is circular and has divisions of ‘n’ pies. Each pie represents one chromosome

of the entire population. The size of the pie is proportional to the fitness of the

chromosome. The chromosome with high fitness has larger pie. There is a fixed
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point ‘p’ directing on the roulette wheel. The roulette wheel is rotated two times

for the selection of two chromosomes to participate as parents in the reproduction

operator. In second spin a different chromosome is selected. The region pointed by

the fixed point ‘p’ after the spinning of roulette wheel stops, is a pie representing

one of the chromosomes of the entire population. More the size of pie of any

chromosome, the more are the chances of selection of that chromosome.

The fitness values of all three solutions is given in the Table 3.9 and they are

computed using the formula of load balancer.

Table 3.9: Fitness Values of Sample Solutions

Solutions Load Balancer Scaled
1 3.72 10− 3.72 = 6.28
2 3.09 10− 3.09 = 6.91
3 3.29 10− 3.29 = 6.71

As the fitness function is a minimization function therefore the second solution is

the best one. But to give much proportion of wheel to it the value is converted

to maximization function for only selection operation. The best chromosome or a

solution has more chances of selection in each generation among the entire pop-

ulation. But roulette wheel ensure that other chromosomes would also get the

chance with the probability equal to their proportion.

From implementation point of view the proportionate selection is executed by

following the steps mentioned below:

1. Converting fitness value to maximization value by subtracting from any large

value greater than the maximum value.

2. Sorting the chromosomes according the fitness value.

3. Adding the fitness value to get the sum ‘s’.

4. Generating a positive random number ‘r’ whose maximum limit is the sum ‘s’.

5. Adding in ‘r’ the fitness values of chromosomes selected one by one in descending

order.
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One modification proposed for the proportionate selection in both version of GA is

to ignore the extremely worst chromosomes. The worst chromosomes are ignored

by the following steps.

1. Adding the fitness values to get the sum ‘s’.

2. Converting fitness value to maximization value by subtracting from any large

value greater than the maximum value.

3. Sorting the chromosomes according the fitness value.

4. Generating a positive random number ‘r’ whose maximum limit is the sum ‘s’.

5. Adding in ‘r’ the fitness values of chromosomes selected one by one in descending

order.

Using the above steps, based on the fitness value the worst chromosomes do not

get any chance of selection and the best or average chromosomes are selected de-

pending on their probability of proportion. The roulette wheel selection operation

is presented in algorithm 2, and it is used in both versions of presented techniques.

Algorithm 2 Selection

Input: load balancer[ ]
Output: Population[xi]

1: procedure Selection
2: SizePopulation← size(Population[ ])
3: S ← sum(load balancer[ ])
4: r ← random(S)
5: load balancer[ ]← scale(load balancer[ ])
6: load balancer[ ]← sort(load balancer[ ])
7: j ← 1
8: while r < S do
9: r ← r + load balancer[xj]

10: j ← j + 1
11: end while
12: return Population[xj]
13: end procedure

3.3.5 Crossover

The crossover is a reproduction operator of GA. It is used to produce two new chro-

mosomes which are the result of crossover of parent chromosomes. The crossover
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operator generates the number of chromosomes depending on the population size.

The probability of crossover defines the number of chromosomes that are produced

using the crossover operation. The rest of the population is filled with the best

chromosomes of the previous generation. The best chromosomes that reserve their

slot in the next generation are known as elites and the concept is known as elitism.

The elitism is necessary to make certain the memory of best chromosomes found

so far over the iterations in GA. Otherwise the best chromosomes may lose, and

the performance of GA would degrade. The crossover probability is a decision fac-

tor in GA and the value of probability in both version of presented GA is defined

later. The offspring produced with the crossover operation possess the properties

of the parents. The parents are selected using the selection operator and then

two offspring are produced from the parents by exchanging the genes of parent

chromosomes. The diagrammatic representation is shown in Figure 3.2 and 3.3.

There are many different types of crossover operators among them two are very

popular. These two crossover operators are single and multi-point crossover and

one can also have the combination of both. There are different ways of applica-

tion of single and multi-point crossover operators and one of them is to exchange

the genes of chromosomes. In the presented technique both single and multi-point

crossover is used to produce the offspring for generating the new population. Some

are produced with single point crossover and some with multipoint to take advan-

tage of both ways. The multi-point crossover introduces more diversity over the

single point crossover. To have more diversity in the population the presented

technique generates high proportion of chromosomes with multi-point and less

with single point crossover. The percentage of offspring generated using single

and multipoint crossover is defined later and the percentage is chosen with exper-

imentation. The cut point in the parents is chosen randomly and it can be single

or multi-point.

In single point crossover, one cut-point ‘c’ is selected in both parents such that

1 < c < size and two new chromosomes are produced. If chromosome 2 and 3 of

example in Section 3.1 are selected as parents with random cut point c = 3, then

offspring generation is as exhibited in Figure 3.2.
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Figure 3.2: Single Point Crossover

In multi-point crossover, two cut-points ‘c1’ and ‘c2’ are selected in both parents

such that 1 < c1 < (size − 1) and c1 < c2 < size. If chromosome 2 and 3 of

example in Section 3.1 are selected as parents with random cut points c1 = 2 and

c2 = 4, then offspring generation is as shown in Figure 3.3.

Figure 3.3: Multi Point Crossover

The newly formed chromosomes have genes which are exchanged from the parents.

In this way the GA exploits the previously formed solutions and it also ensure

some exploration. But to have significant exploration where no gene of the parent

is adopted, the mutation operator is used. The crossover operator of presented

technique is presented in algorithm 3.
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Algorithm 3 Crossover

Input: Population[Parent1], Population[Parent2], f lag, p
Output: Population[xi], Population[xi+1]

1: procedure Crossover
2: SizeChromosome← size(Population[xi])
3: CutPoint1 ← random(SizeChromosome)
4: CutPoint2 ← random(SizeChromosome)
5: if flag == 1 then
6: for j ← 1 to Cutpoint1 do
7: Child1[xj]← Population[Parent1]
8: Child2[xj]← Population[Parent2]
9: end for

10: for j ← CutPoint1 + 1 to SizeChromosome do
11: Child1[xj]← Population[Parent2]
12: Child2[xj]← Population[Parent1]
13: end for
14: else
15: for j ← 1 to Cutpoint1 do
16: Child1[xj]← Population[Parent1]
17: Child2[xj]← Population[Parent2]
18: end for
19: for j ← CutPoint1 + 1 to CutPoint2 do
20: Child1[xj]← Population[Parent2]
21: Child2[xj]← Population[Parent1]
22: end for
23: for j ← CutPoint2 + 1 to SizeChromosome do
24: Child1[xj]← Population[Parent1]
25: Child2[xj]← Population[Parent2]
26: end for
27: end if
28: Population[p]← Child1[ ]
29: p← p + 1
30: Population[p]← Child2[ ]
31: end procedure

3.3.6 Mutation

The mutation operator is applied in GA on the chromosomes formed by the

crossover operation. The notion behind mutation as the name implies is to mutate

the genes. The mutation operator brings diversity in the population by introduc-

ing new genes in the chromosome. If there is only crossover operator, then the

genes would be no different from the previous generation. The introduction of new

gene may not contribute in improvement in fitness in case of only crossover, but
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through mutation diversity is introduced in the population. From task scheduling

point of view, there may be a VM to which no or very few jobs are assigned in

any generation, so in the subsequent generations the mutation operator raises the

probability of mapping of jobs to that VM.

Usually the mutation operation is not applied on the elites and rest of the popu-

lation undergoes the mutation with the defined mutation probability. There are

different types of mutation operators like gene swapping, random gene generation

and so on. The random gene generation is known as random resetting mutation

operator. The mutation operator used in the presented technique is random re-

setting and it generates random VM number against any job in the chromosome

based on the probability. The detailed computation of mutation for the presented

technique is exhibited using the chromosomes defined later in example in Section

3.1. The mutation probability states the probability of mutation of genes in a

chromosome. There are two ways to define the mutation probability which are as

follows:

1. One way is that the number of genes or bits (in case of binary), to be mutated,

depends on the probability of mutation. For instance, the probability of 70%

means that 70% genes of a chromosome would be mutated and 30% would remain

same.

2. Another way is that mutation of each gene or bit (in case of binary) of a

chromosome depends on the value of probability.

In the presented technique the probability of mutation is applied on each gene

and the mutation rate or probability of mutation is defined later. Usually the

probability of mutation is chosen with experimentation and it is a key factor

to improve the global search capabilities of GA. There are different approaches

regarding the selection of mutation rate, but it depends on the problem. The

mutation rate can be fixed value that remain constant throughout the generations

of GA. Mutation rate can be variable that changes in the course of GA. The

variable mutation rate is called adaptive when it changes automatically with some

defined constraints.
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When mutation rate is too small then the algorithm would take lot of time to

converge. Low mutation rate may cause premature convergence as the exploitation

supersede the exploration of search space. On the other hand, when mutation rate

is too high the chances of skipping any optimal local minimum, which could be

global minima, increases and the exploitation is compromised. The exploitation

is necessary in the search process of global optima to exploit the nearest points of

global optimum. Therefore, there should be a balance in mutation rate to avoid

situation of premature or failure of convergence. One approach is to set mutation

rate very high at beginning of GA so that the GA can explore lot of points in the

huge search space. Later when GA finds some better chromosomes the mutation

rate is decreased to help GA focus on the optimal points found so far by adding

more exploitation capabilities. Another approach is to set mutation rate very

low in beginning so GA would not skip any local optimal point and later when

GA starts to entrap in local optima the mutation rate is increased to jump pass

the local optimal point in order to avoid premature convergence. The mutation

rate chosen in the presented technique is based on the extensive experimentation

discussed in the next chapter and also the standard deviation of fitness value is

evaluated to make sure that there is enough diversity in the population or not.

The equation of standard deviation is presented in Equation 3.9.

s =

√∑n
i=1(f (x)i − f (x)mean)2

size of pop
(3.9)

The example of mutation is demonstrated below using the chromosome presented

in example in Section 3.1. Suppose the mutation rate ‘m’ is 0.02 and a random

number generated are given in the Table 3.10. Here 0.02 represents the probability

of 2%. The probability is checked against each gene through a random number

‘r’ between 0 and 1. If r <= m then a random number ‘n’ is generated such that

‘n’ is less than number of VMs, otherwise the value of ‘n’ is equal to the previous

value of the gene of chromosome. The solution no. 3 of example in Section 3.1 is

updated using the values of ‘n’ as shown.
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Table 3.10: Random Mutation Example

Value of r Solution no.3 If r <= m N
0.5 1 False 1
0.7 1 False 1
0.005 1 True 3
0.006 2 True 1
0.12 2 False 2
0.34 3 False 3

We can see the difference after mutation operation applied on solution no. 3 in

the Figure 3.4.

Figure 3.4: Mutation Operation

The 3rd and 4th genes of the chromosome are replaced with a random number and

this changes the chromosome. The newly formed chromosome has some properties

which are passed from the genomes of parents and two new genes are added which

may not be totally different from the parents. Without mutation the crossover

cannot bring significant diversity therefore mutation operation is essential. The

mutation operator is presented in algorithm 4.
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Algorithm 4 Mutation

Input: Population[xi]
Output: Population[xi]

1: procedure Mutation
2: SizeChromosome← size(Population[xi])
3: for i← 1 to SizeChromosome do
4: r ← random(1)
5: if r <= probability then
6: r ← random(SizeChromosome)
7: Gene[xi]← r
8: end if
9: end for

10: end procedure

3.4 BGA

The balancer GA is presented to balance the workload by updating the chromo-

somes of GA with a heuristic approach. From the literature it has been observed

that guiding GA with heuristic can have positive impact on the fitness value to

meet goal of global convergence [14]. The benefits of meta-heuristics and selec-

tion of meta-heuristics over heuristic has been discussed already. The merger of

heuristic approach and meta-heuristic has shown improvement in fitness value as

revealed in [14]. The presented balancer GA shows improvement over other pop-

ular state-of-the-art techniques and it has been proved experimentally in the next

chapter.

The BGA follows the same steps of GA having all properties and evolutionary

operations of GA. The initialization, elitism, selection, crossover, mutation and

other necessary steps of GA in the presented technique are already discussed in

detail. This section briefs the BGA technique and the necessary relevant discussion

of the presented technique.

The aim of balancer GA is to take in consideration the over and under-utilization

of virtual machines. The mapping defined by the chromosomes of GA can be fur-

ther enhanced by balancing the workload and the balancer updates some genes of

chromosomes. There are some researches which suggested that initialization phase

should have heuristic, some have applied heuristics to update large proportion of
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chromosomes and some have updated partial chromosomes or few chromosomes.

They are discussed earlier in this chapter, but this section describes balancer GA

which updates partial chromosomes. The detail of BGA reveals the benefits of

updating partial chromosome with the presented technique.

The flow chart of BGA is shown in Figure 3.5, and it shows that balancer operator

is proposed side by side to the regular evolutionary operators. The algorithm be-

gins with the initialization phase and the population passes through the crossover

and mutation phase following the parameter settings briefed earlier. After the mu-

tation phase the balancer algorithm is called to balance the chromosomes based

on the VM share, just like the VM share computed in the fitness function.

Start

Population
Initialization

Fitness Calculation Converged
Yes

StopChromosome
Selection For
Reproduction

No

Calculate
Rate Of Probability

Crossover

Mutation

Balancer

Next Generation

Figure 3.5: Balancer Genetic Algorithm
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The balancer genetic algorithm is presented in the algorithm 5. The fitness, se-

lection, crossover and mutation operations are briefed in algorithm 1,2,3, and 4

respectively.

3.4.1 Balancer Algorithm

The balancer is a presented heuristic being used in GA to update the chromosomes

with the concept that the overloaded and underloaded VMs should reconsider the

mapping of jobs. The Figure 3.6 shows the flow of balancer algorithm.

Calculate VMshare
(mi)

Subtract jobsize
from VMshare VMshare<0

Add Cloudlet to
Cloudlet_Pool

VMshare>0
Add job size in

VMshare

Sort VM_Pool in
descending order

Sort Cloudlet_Pool
in descending order

Update VMshare

Last gene

Yes

Yes
Cloudlet_Pool>0

Yes

Assign max job to
max VMshare VMNo

No

No

End

Start

No

Yes

Chromosome

Next Gene

Figure 3.6: Balancer Operation

The VM share of each VM is calculated using the formula of VM share defined

earlier. The chromosome is iterated gene by gene and the load on VM is computed
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Algorithm 5 Balancer GA

Input: Size of Jobs, Power of VMs
Output: Mapping of Jobs to VMs

1: Population[ ]← random(Num of VMs)
2: for i← 0 to n do
3: load balancer[ ]← FitnessAlgorithm(Population[xi])
4: end for
5: SizePopulation← size(Population[ ])
6: while GA does not converge do
7: newPopulation← 0
8: p← 3
9: s← 1

10: Parent1 ← 1
11: Parent2 ← 1
12: s← (SizePopulation/2)− 2
13: SinglePoint← s × 0.2
14: MultiPoint← s × 0.8
15: while newPopulation < s do
16: while Parent1 == Parent2 do
17: Parent1 ← SelectionAlgorithm(load balancer[ ])
18: Parent2 ← SelectionAlgorithm(load balancer[ ])
19: end while
20: if SinglePoint > 1 then
21: flag ← 1
22: Population[ ]← CrossoverAlgorithm(Population[Parent1],

Population[Parent2], f lag, p)
23: else
24: flag ← 2
25: Population[ ]← CrossoverAlgorithm(Population[Parent1],

Population[Parent2], f lag, p)
26: end if
27: SinglePoint← SinglePoint− 1
28: newPopulation← newPopulation + 1
29: end while
30: for i← 1 to SizePopulation do
31: if Population[xi] not Best1 or Best2 then
32: MutationAlgorithm(Population[xi])
33: end if
34: end for
35: for i← 1 to SizePopulation do
36: Population[xi]← BalancerAlgorithm(Population[xi])
37: end for
38: end while
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sequentially according to the formula of PSU described earlier. If VM share at the

current point is greater than zero, then it means that job size can be subtracted

from the VM share. But after the subtraction if the VM share drops below zero

then the job is re-added. It shows that job size is not subtracted, and job is not

assigned to that VM. The unassigned jobs for which the VM share dropped below

zero is added to cloudlet pool. The cloudlet pool is later used in algorithm to

assign the unassigned jobs such that the workload is balanced among VMs. The

subtraction of job size, when VM share does not drop below zero, shows that job is

suitable for assignment to that VM and there would be no change in mapping for

that particular job. The process of checking the genes of chromosome continues

till the last gene and wherever the VM share goes below zero whether before

subtraction or after subtraction of job size, the job is added to the cloudlet pool.

This overall process ensures that no VM gets any extra job exceeding its share.

The remaining VM share of each VM is considered and according to it the VMs

are sorted in descending order of their remaining share. The jobs in cloudlet pool

are also sorted according to their sizes. The sub-process of balancer GA is to

assign the unassigned jobs which created over utilization of VM at first place. The

unassigned jobs are mapped to VMs where VM share used does not exceed the

limit of share. The maximum size job in the cloudlet pool is mapped to the VM

with maximum remaining VM share and then both lists of remaining VM share

and cloudlet pool are sorted in descending order. The sub-process continues till

there is any job left in cloudlet pool. The balancer operator of BGA is presented

in algorithm 6.

3.4.2 Parameters Setting of BGA

The parameters setting of BGA are reflected in Table 3.11.
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Algorithm 6 Balancer

Input: Population[xi]
Output: Population[xi]

1: procedure Balancer
2: SizeChromosome← size(Population[xi])
3: for i← 1 to SizeChromosome do
4: if VMShare[Gene[xi]] > 0 then
5: VMShare[Gene[xi]]← VMShare[Gene[xi]]− JobSize[xi]
6: if VMShare[Gene[xi]] < 0 then
7: VMShare[Gene[xi]]← VMShare[Gene[xi]] + JobSize[xi]
8: list[ ]← jobID
9: end if

10: end if
11: end for
12: Jobs[ ]← sort(Jobs)
13: VMShare← sort(VMShare)
14: while list[ ] not empty do
15: while VMShare[max] > 0 do
16: VMShare[max]← VMShare[max]− Job[list[xi]]
17: Population[Job[xi]]← VMnumber
18: end while
19: end while
20: end procedure

Table 3.11: BGA Parameters

Parameter Type/Value
Encoding Discrete
Optimization Multi Objective
Population Size 120
Stopping Criteria Number of Iterations - 1000

Crossover Probability
Greater than 98% and 2
elites

Crossover Operation
20% Single Point
80% Multi Point

Type of Multi-point Two Point Crossover
Mutation Rate 0.0047
Mutation Type Random Resetting
Mutation Checked Probability of each gene

3.5 SGA

The symbiotic GA is presented with the intention of improving the convergence

speed of GA. It has been observed that GA has good potential of finding the global
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optimum as described earlier in this chapter, but GA suffers slow convergence [90].

Due to this fact there should be a way to boost up the convergence process of GA.

Speeding up GA may result in premature convergence and therefore the speed

up process should take care that GA would not exploit too much in the search

process. The global optimum should be considered in the search of solution and

the convergence should improve parallel to it.

In the literature [2, 8], multiple mechanisms have been presented to improve the

search speed of GA in task scheduling problem. The problem with them is that

they compromise over the search of global optimum. The GA has been fused with

variety of meta-heuristics to overcome any possible vulnerability. It has never

been explored to merge GA with symbiosis operator. The presented technique

introduces a new way in which GA is combined with the symbiotic organism

search (SOS) algorithm. There are many possible ways to combine GA with other

techniques and some possibilities have been revealed earlier in the thesis. One way

is to keep GA as the theme approach and adding any other operation in GA which

can improve the exploitation or exploration capabilities of GA. For this mutualism

operator of SOS is merged with GA to improve the convergence. The working of

SOS and the rationale for opting the operator of SOS are described below.

3.5.1 SOS

The SOS algorithm was proposed as a meta-heuristic in [94]. The SOS was used for

task scheduling in papers [5, 11, 20, 95]. The SOS algorithm exhibits the symbio-

sis relationship among the organisms. The three operators of SOS are mutualism,

commensalism and parasitism. The mutualism phase exhibits the symbiotic rela-

tions in which two organisms interact with each other for the mutual benefit and

here both get the benefit. The Equations 3.10, 3.11 of mutualism is designed in

such a way it enables the interaction of two organisms and with the reference of the

best organism, both organisms are updated. The DSOS algorithm has valuable

symbiotic competence to exploit by referring to the distance of any organism or

particle from the best particle based on the fitness value. The mutualism phase
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of DSOS updates the organism to get benefit from two organisms in which both

gets either full or partial benefit.

x′i (q) =

(
ceil

(
xi + r1(x

best − (
xi + xj

2
)f1)

))
mod(m + 1) (3.10)

x′j (q) =

(
ceil

(
xj + r2(x

best −
(
xi + xj

2

)
f2)

))
mod(m + 1) (3.11)

The r1 and r2 are random values generated between 0 and 1 to scale the outcome of

the mutual benefit. The f1 and f2 are the random value which can be either 1 or 2.

The 1 represents the partial benefit because the average of both gene is considered.

On the other hand, the 2 represents the full benefit because the average value is

cancelled by 2 and sum of both remains full. The ceil function is used to keep

the discrete nature of the equation and modulus make sure that values may not

exceed the limit. Just like in chromosome the value of gene cannot exceed the

number of VMs, similarly the modulus in equations of mutualism serves the same

purpose.

From the literature and experimentally it has been revealed that SOS has good

exploitation capabilities. Experimentally it has been revealed that mutualism also

improves the exploitation of GA which improves convergence and the exploitation

of best chromosome found so far. From GA point of view the organisms can be

considered as a chromosome because both have same representation. The flow of

the presented SGA is presented in Figure 3.7.

The Symbiotic GA is presented in algorithm 7 and the mutualism phase of SOS

begins to work after the mutation phase of GA. The fitness, selection, crossover,

mutation and other parameter settings are same as presented earlier in the algo-

rithm 1,2,3 and 4 respectively.

The Equations 3.10, 3.11 are used to compute the updated value of the chromo-

some. The working of mutualism is as follows. Using the Equations 3.10 and

3.11 two new chromosomes are generated with the mutual relationship of two
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Figure 3.7: Symbiotic Genetic Algorithm

previous chromosomes and the best chromosome. The fitness value of both new

chromosomes is evaluated and if anyone is better than the previous chromosome, it

replaces previous chromosome. Otherwise newly generated chromosomes are dis-

carded and the process of generating two new chromosomes continue for the whole

population. The chromosome ‘i’ is selected in a sequence where ‘j’ is randomly

selected as shown in the algorithm 7.

The mutualism operator is presented in algorithm 8. The mutualism phase is

intensively required at the initial stages of the GA because population is too much

diverse and far from the good solution. The mutualism phase may not be called

at the later stages of algorithm if the technique is required to be run for large

number of iterations.
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Algorithm 7 Symbiotic GA

Input: Size of Jobs, Power of VMs
Output: Mapping of Jobs to VMs

1: Population[ ]← random(Num of VMs)
2: for i← 0 to n do
3: load balancer[ ]← FitnessAlgorithm(Population[xi])
4: end for
5: SizePopulation← size(Population[ ])
6: while GA does not converge do
7: newPopulation← 0
8: p← 3
9: s← 1

10: Parent1 ← 1
11: Parent2 ← 1
12: s← (SizePopulation/2)− 2
13: SinglePoint← s × 0.2
14: MultiPoint← s × 0.8
15: while newPopulation < s do
16: while Parent1 == Parent2 do
17: Parent1 ← SelectionAlgorithm(load balancer[ ])
18: Parent2 ← SelectionAlgorithm(load balancer[ ])
19: end while
20: if SinglePoint > 1 then
21: flag ← 1
22: Population[ ]← CrossoverAlgorithm(Population[Parent1],

Population[Parent2], f lag, p)
23: else
24: flag ← 2
25: Population[ ]← CrossoverAlgorithm(Population[Parent1],

Population[Parent2], f lag, p)
26: end if
27: SinglePoint← SinglePoint− 1
28: newPopulation← newPopulation + 1
29: end while
30: for i← 1 to SizePopulation do
31: if Population[xi] not Best1 or Best2 then
32: MutationAlgorithm(Population[xi])
33: end if
34: end for
35: for i← 1 to SizePopulation do
36: j ← random(SizePopulation)
37: MutualismAlgorithm(Population[xi], Population[xj])
38: end for
39: end while
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Algorithm 8 Mutualism

Input: Population[xi], Population[xj]
Output: Population[xi], Population[xj]

1: procedure Mutualism
2: SizeChromosome← size(Population[xi])
3: r1← random()
4: r2← random()
5: f1← random(2) + 1
6: f2← random(2) + 1
7: for i← 1 to SizeChromosome do
8: A1[xi]← (Gene[xi] + Genej[xi])/2× f1
9: B1[xi]← Best1[xi]− A1[xi]

10: B1[xi]← Gene[xi] + r1×B1[xi]
11: B1[xi]← B1[xi] modulus Num of VM
12: if B1[xi] < 0 then
13: B1[xi]← B1[xi]× (−1)
14: end if
15: A2[xi]← (Gene[xi] + Genej[xi])/2× f2
16: B2[xi]← Best1[xi]− A2[xi]
17: B2[xi]← Genej[xi] + r2×B2[xi]
18: B2[xi]← B2[xi] modulus Num of VM
19: if B2[xi] < 0 then
20: B2[xi]← B2[xi]× (−1)
21: end if
22: end for
23: MS ← CalculateF itness(B1[ ])
24: if MS < load balancer[xi] then
25: for j ← 1 to SizeChromosome do
26: Gene[xj]← B1[xj]
27: Population[xj]← Gene[xj]
28: end for
29: end if
30: MS ← CalculateF itness(B2[ ])
31: if MS < load balancer[xj] then
32: for j ← 1 to SizeChromosome do
33: Genej[xj]← B2[xj]
34: Population[xj]← Genej[xj]
35: end for
36: end if
37: end procedure



Methodology 72

3.5.2 Parameters Setting of SGA

The parameters setting of SGA are reflected in Table 3.12.

3.6 Application and Analysis

The presented techniques are static schedulers that work in batch mode for inde-

pendent tasks. Both techniques are different and can be used in different scenarios.

This section provides the analysis of complexity and rationales for the use of both

techniques.

The time complexity of non-deterministic approaches is usually not approximated

but can be expressed in asymptotic notation like one calculated by Heba et al.

in [86]. The complexity of BGA and SGA is an estimation of worst-case analysis

depending on the operations of algorithm. There are ‘n’ tasks to be scheduled on

m/2 VMs with the population size of ‘m’. As the population size is almost double

the number of VMs used in the experimentation therefore the VMs are represented

with m/2. The GA based techniques are run ‘k’ number of times to find the optimal

solution. The ‘k’ is the stopping criteria as well. The complexity of fitness function

in the GA can be computed by adding up the worst-case running time which is n+

Table 3.12: SGA Parameters

Parameter Type/Value
Encoding Discrete
Optimization Multi Objective
Population Size 120
Stopping Criteria Number of Iterations - 500

Crossover Probability
Greater than 98% and 2
elites

Crossover Operation
20% Single Point
80% Multi Point

Type of Multi-point Two Point Crossover
Mutation Rate 0.0047
Mutation Type Random Resetting
Mutation Checked Probability of each gene
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n/2+n/2+m(n+n/2). This is equal to n+mn and as the maximum is considered so

the complexity of fitness function is O(mn). The crossover and mutation functions

have complexity of O(n). The mutualism phase of SGA consumes 2(n+mn) time,

which equates to 2n+2mn. Overall the mutualism phase has complexity of O(mn).

The balancer operation of BGA has n+n/2 complexity equal to O(n). The time

complexity of BGA and SGA is same because only one operation is different. Time

complexity is equal to O(m2n + k(m3 + mn)).

The heuristic based solutions move to a conclusion quickly but there are lot of

solutions close to one found by the heuristic. In BGA heuristic is fused with meta-

heuristic which also leads to a quick solution, but it also enables exploration of

more points or solutions near the solution found by heuristic. It also helps to

overcome the biasness of heuristics and to get better problem specific solution.

The meta-heuristic based solutions are usually chosen because heuristics may fail

with different type of datasets. Meta-heuristics are more suitable for NP hard

problem where the search space is huge, and the optimization is required. Meta-

heuristics can also achieve multi-objective optimization in much better way than

heuristics. The BGA complies with the research question number 1 and 3.

The power of GA for task scheduling has already been discussed in Section 3.2 and

it is known that pure GA is slow in convergence. Fast meta-heuristic is required

therefore SGA is presented. The objective is to get better result in fewer iterations

specifically when time is a concern. The original working of meta-heuristic is not

disturbed with SGA and it is not biased toward any specific objective. Although

fitness function plays it role like any meta-heuristic. The SGA is for task scheduling

problem but not just limited to the sub-problem of improving makespan and load

balancing. It can be used because it does not fail with any dataset and also

does not suffer premature convergence. The SGA is for fast convergence and it is

connected with the research question number 2.



Methodology 74

3.7 Performance Model and Metrics

The presented technique BGA improves the makespan and resource utilization

through load balancing, where the SGA technique improves the convergence speed

of GA. The SGA also considers the improvement in the performance metrics

of makespan and resource utilization. Although the main focus is to improve

convergence such that the makespan and resource utilization are not so compro-

mised. The performance of BGA is evaluated on makespan and resource utilization

whereas convergence is focused in SGA as it coincides with the research questions.

This section provides the detail of performance metrics used for the evaluation

of both techniques. The formulas for the calculation of metrics are also provided

and some are already described so they are referred where necessary. The pre-

sented techniques and the corresponding measures of evaluation are presented in

the Table 3.13.

Table 3.13: Presented Techniques and Performance Measures

Techniques Performance Measures
BGA Makespan and ARUR
SGA Curve for Makespan and ARUR

3.7.1 Makespan

The makespan is the finishing time of batch of jobs. The formula for the calculation

is provided as follows [5, 7, 8, 10, 15, 16, 20, 21, 24, 34, 37, 52, 57, 59, 65].

CTVMj
=

∑n
i=1(jobsizei ×Map[i, j])

VMjmips
∀ i ∈ 1, 2, 3, . . . ,m & j ∈ 1, 2, 3, . . . , n

(3.12)

makespan = max
(
CTVMj

)
∀j ∈ 1, 2, 3, . . . , n (3.13)
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3.7.2 ARUR

The ARUR is average resource utilization ratio and the formula is provided as

follows [7, 13, 35, 44–51].

ARUR =
(
∑n

j=1 CTVMj
)/n

makespan
(3.14)

The value of ARUR is 1 when average finishing time of all VMs is equal to the

maximum finishing time [7]. It shows that all VMs have taken equal amount of

time and this is the objective of good load balancing. Load balancing does not

always ensure that makespan would be minimum. The value of ARUR can be good

for different possible mappings, having varying makespan values. To achieve good

makespan considering the optimal load balance, both objectives are considered

parallel as already discussed in the Section 3.3.3.

3.7.3 Convergence

Convergence is a measure to show the value of fitness function over the number

of iterations of algorithms. The convergence curve in meta-heuristic is revealed in

[2, 5, 8].

• Based on makespan

• Based on ARUR

3.8 Evaluation Benchmarks

There are many heuristics, meta-heuristics and hybrid techniques proposed for

efficient task scheduling. Some are reported in well reputed journals and con-

ferences as described in the literature review. This section provides the de-

tail of baseline papers for the comparison of results of the presented techniques.
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The reason for the selection of those papers is also highlighted. The main con-

cerns in the selection of papers are to choose the recent publications which are

most relevant to this research. In the recent years many GA based techniques

[2, 8, 14, 17, 18, 23, 24, 44, 52, 54, 55] have been proposed so for the comparison of

SGA whose main focus is on the convergence the evolutionary and metaheuristic

approaches are selected. These approaches are ETA-GA [52] and DSOS [5]. BGA

has a heuristic balancer operation therefore both heuristic and metaheuristic tech-

niques are used in the comparison. These approaches are ETA-GA [52], MGGS

[14], DSOS [5] and RALBA [7]. Their results are reported in the publications and

mostly dataset of the papers is not available. But according to the set claims in

the research questions, benchmark techniques are opted. The details of dataset

for the comparison of performance and rationale are described in the next section.

The ETA-GA [52] is a pure GA for task scheduling, and it is compared with

both BGA and SGA. When compared with SGA the convergence is considered

in achieving the good fitness value. Similarly, when compared with BGA both

makespan and resource utilization are compared. The ETA-GA is published in

“cluster computing” journal in 2019 with objective of improving makespan. The

results of ETA-GA are reported but the dataset is not available. The ETA-GA

is not open source therefore for the comparison the technique is implemented

following the instructions available in the research paper. The parameter settings

of ETA-GA is exactly same as referred in the literature and the iterations of ETA-

GA and presented techniques are fixed for comparison on equal grounds.

The MGGS [14] is a binary GA having a heuristic operation of load balancing

and it fits with the objectives of BGA for comparison of resource utilization and

makespan. The MGGS is published in “neural computing and applications” jour-

nal in 2019 and has objective of improving makespan and load balancing, where

load balacing is not part of fitness function. The MGGS is compared with BGA.

The iterations of MGGS are computationally expensive and the iterations can take

lot of time in MGGS in the worst case. The presented BGA is a GA based tech-

nique having heuristic just like MGGS but the operations of BGA are light weight.

The results of MGGS are reported but it is evaluated on a very small dataset and
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some instances of the dataset are available. It is not right choice to evaluate the

presented technique on the same small dataset. Therefore, the MGGS is imple-

mented according to the details mentioned in the research publication. Using the

available instances of the synthetic dataset presented in the paper the results of

the implemented MGGS are generated which are same as mentioned in the pa-

per. It shows that the implementation is accurate and can be used for the sake of

comparison. The MGGS is not compared with SGA because the agenda of MGGS

complies with BGA but purpose of SGA is improvement in convergence. Whenever

heuristic is embedded with meta-heuristic, the meta-heuristic is guided with the

heuristic and rushes toward heuristic solution. Therefore, the convergence is by

default fast, but the comparison of convergence is not for such type of techniques.

Instead the convergence analysis is for meta-heuristics and the advantage of pure

meta-heuristic is discussed in Section 3.6. Having said that one another reason

for not comparing MGGS with SGA is that the MGGS takes too much running

time specially when large sized batches are considered. MGGS converges to a

solution in approximately 200 iterations for large batches and afterward it does

not improve. The 200 iterations of MGGS takes time almost equal to 4000 itera-

tions of SGA. Whereas the SGA keeps improving after 4000 iterations and so on.

Hence, the SGA cannot be compared with MGGS on equal grounds considering

the convergence analysis.

The DSOS [5] is a meta-heuristic approach for task scheduling and it is published in

“future generation computer systems” journal in 2016. Fitness function in DSOS

is based on makespan whereas fast convergence is also exhibited as an achievement.

The performance of DSOS is evaluated on a synthetic dataset which is not available

in the paper, but the same dataset is used by the authors in another publication.

In another publication the dataset is available. To evaluate the performance of

DSOS the technique is implemented. For the proof of correct implementation, the

results using the above-mentioned synthetic dataset are generated and they are

comparable with the results presented in the paper. The DSOS is compared with

both SGA and BGA.
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The RALBA [7] is a heuristic approach, published in “cluster computing” journal

in 2018. RALBA shows improvement over other popular heuristics and therefore

the comparison of the presented technique is required to get idea how the presented

technique is performing. RALBA is compared with BGA only because it cannot be

compared for convergence as it is a heuristic approach. RALBA is an open source

technique and the dataset used in the RALBA is a large realistic dataset which

is also published. The same dataset is used for performance evaluation of BGA

and the parameter settings is consistent for comparison of makespan and resource

utilization. There is no intention of comparing the presented techniques with

each other as they have different objectives. The Table 3.14 shows the presented

technique and the benchmark techniques for comparison whereas the details of

each paper is already described above.

Table 3.14: Bechmark Techniques

Presented Techniques
Benchmark Techniques

Heuristic Meta-Heuristic Hybrid
BGA RALBA DSOS MGGS

ETA-GA
SGA DSOS

ETA-GA

3.9 Dataset

The dataset for independent task [7, 96] scheduling consists of tasks and VMs

with their sizes and power specifications respectively. The main portion of the

dataset is the detail of tasks to be mapped and different VM specifications are

chosen for experimentation by the researchers. There are many techniques in the

literature which have been tested on sample datasets having very small sizes of

tasks and few numbers of instances [14, 17, 23, 29, 38, 40, 57, 72, 75, 76, 85]. Such

small sizes and fewer instances of tasks may not be the right choice to evaluate

the performance of scheduler because the cloud-based systems usually have large

number of computationally intensive tasks [94]. Normally there are two types of

datasets that are used in independent task scheduling.
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1. Synthetic Test Dataset

2. Realistic Test Dataset

The presented techniques are evaluated on both synthetic and realistic datasets to

avoid dataset dependent findings. The details of the datasets are provided below.

3.9.1 Synthetic Dataset

The dataset is regarded as synthetic if it is not gathered from the original event

[87]. By original event in case of tasks, it is meant that data is based on the

real traces of any cloud system. So, synthetic dataset is made analyzing the real

traces but not actually derived from the real traces. Hence, the synthetic dataset

is not specific to any cloud system and it is more of generic representation than

specific to any cloud. The synthetic dataset used for evaluation of the presented

techniques have been used in the following literatures [5, 11, 95]. The dataset

consists of four classes and these are:

1. Left Skewed

2. Right Skewed

3. Normal or bell shaped

4. Uniform

Each category of the defined dataset has batch of jobs and there are ten different

batch sizes. The batches are of 100, 200, 300, 400, 500, 600, 700, 800, 900 and

1000 jobs. The job sizes vary in each batch size the Table 3.15 shows a sample

having few instances of left skewed dataset where batch size is 1000. Left skewed

dataset has more large size tasks than small tasks whereas in right skewed it is

opposite to left skewed. Normal distribution has some small and large size tasks

but mostly tasks are of medium size. The normal distribution is bell shaped. The

uniform distribution represents that small, medium and large tasks are mostly

equal in number.



Methodology 80

Table 3.15: Sample of Synthetic Dataset

Job no. Job size (mi)
1. 34304
2. 37849
3. 36347
4. 30933
5. 34976
6. 38501
7. 37059
8. 36504
9. 29606
10. 34944

3.9.2 Realistic Dataset

The dataset is called to be realistic dataset if it is based on the real events [87, 89].

The traces of cloud normally have the execution time and realistic dataset should

have sizes of tasks obtained from the execution timings.

For the evaluation of the presented techniques the realistic dataset having name

Google Cloud Jobs (GoCJ) [89] is used. The same dataset has been used in the

following publications [7, 13]. The realistic dataset has tasks with their sizes, and

they are based on the traces of Google cluster and M45 supercomputing cluster.

To generate the workload the Monte-Carlo simulation has been deployed [89]. The

batch sizes available in the dataset are 100, 150, 200, 250, 300, 350, 400, 450, 500,

550, 600, 650, 700, 750, 800, 850, 900, 950, and 1000.

Some of the initial instances of batch size 1000 are presented in the Table 3.16.

Specifications

Normally the power of VMs are chosen randomly for experimentation. The unit

for the power of VMs is million instructions per second (MIPS). For the evaluation

of the presented techniques the parameter list of VMs is presented in the Table

3.17 and same has been used in [7].
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Table 3.16: Sample of Realistic Dataset

Job no. Job size (mi)
1. 83000
2. 95000
3. 91000
4. 81000
5. 27500
6. 49000
7. 103000
8. 95000
9. 47000
10. 71000

Table 3.17: VM Specifications

VM
no.

Processing
Power

(MIPS)

VM
no.

Processing
Power

(MIPS)

VM
no.

Processing
Power

(MIPS)
1. 100 21. 1000 41. 1750
2. 100 22. 1000 42. 1750
3. 100 23. 1000 43. 1750
4. 100 24. 1000 44. 1750
5. 100 25. 1000 45. 4000
6. 100 26. 1000 46. 4000
7. 100 27. 1250 47. 4000
8. 500 28. 1250 48. 4000
9. 500 29. 1250 49. 4000
10. 500 30. 1250 50. 4000
11. 500 31. 1250
12. 500 32. 1250
13. 500 33. 1500
14. 500 34. 1500
15. 750 35. 1500
16. 750 36. 1500
17. 750 37. 1500
18. 750 38. 1500
19. 750 39. 1750
20. 750 40. 1750

3.10 Experimental Setup

The experimentations are performed with the configurations presented in the sec-

tion below.
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3.10.1 System Configurations

The machine used for the experimentation possesses the 1.7 GHz clock speed

on Intel Core 3-4010U Dual Core CPU and the main memory of 4 GBs. The

simulator used for deploying the cloud system is CloudSim 3.0.3 and the simulation

environment is presented in the Table 3.18.

Table 3.18: System Configurations

Datacenter 1
Total Host Machines 30

Cloud Host Machines
4 Dual-core and 26 Quad-core machines each of
4000 MIPS

Memory of Host Machines Each of 16384 MBs
Host Bandwidth 10000 Megabits/s
Host Storage 1000000 MB
Count of VMs 50 VMs
Processors in VMs 1
Operating System Linux
System Architecture x86
Virtual Machine Monitor
(VMM)

Xen

Image Size 1000 MB
VM RAM 512 MBs
VM Bandwidth 1000 Megabits/s
Cloudlet Scheduler Space Shared

The benchmark techniques used for the evaluation are already described. They

have their own parameter settings, but few settings are made consistent for inves-

tigating on equal grounds. The parameter settings for comparing BGA and other

techniques are 1000 number of iterations and 120 number of chromosomes. SGA

is compared with meta-heuristics and number of chromosomes are set to 120 and

the iterations are 500. Each meta-heuristic technique is run three times as they

are stochastic. The average of three run is utilized in performance evaluation.



Chapter 4

Experimentation and Evaluation

This chapter provides the experimentation performed for the evaluation of pre-

sented techniques. All the benchmark techniques as described earlier are evaluated

on two datasets and results are compared with BGA and SGA. The experimental

setup and environment are described earlier. First the experimentation conducted

to set the mutation rate of BGA, and SGA are demonstrated. Later the perfor-

mance of BGA and SGA tested on realistic and synthetic datasets is presented

with the necessary discussion. The makespan and resource utilization of both

techniques are presented in experimentations. As there are different batch sizes

in both datasets therefore multiple graphs are generated for different batch sizes.

The average of all batch sizes for the performance metrics is also separately pro-

vides in graphs. The improvement or decline in findings of evaluated approaches

is also highlighted.

4.1 Mutation Rate

The BGA and SGA are based on GA and the one of the important aspects in

fine tuning of genetic based technique is the setting of mutation rate. Different

mutation rates are tested on GoCJ workload, batch of 1000 for 500 iterations. The

findings are presented in Figure 4.1 and 4.2.

83
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Figure 4.1: Mutation Rate Analysis - A
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Figure 4.2: Mutation Rate Analysis - B
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To set the mutation rate for the presented techniques the population of GA is

analyzed. Different experimentations are conducted to analyze the behavior of

GA with varying mutation rates in the problem of task scheduling. It has been

observed during the experimentation that making mutation rate adaptive or vari-

able cannot have significant impact and over the iteration the fitness results in

same value. Whereas setting static mutation can contribute good enough in the

problem of task scheduling. As long as the population is diverse there is no need

to change the mutation rate but there should be a balance in the diversity of pop-

ulation as discussed in the Section 3.3.6. The fitness value is a key factor which

shows that either fitness is improving or not. For different set of mutation rates

the GA demonstrates continuous improvement but it is required that the fitness

value should improve quickly and continuously. Same mutation rate set experi-

mentally is applied in both BGA and SGA. Initially the mutation rate was set to

0.1 and then it was increased to 0.2. The performance degraded and therefore the

rate was later decreased to 0.05 and 0.01. The GA showed improvement with the

decrease in mutation rate as shown in the Figure 4.2. At reaching mutation rate of

0.005 the performance becomes more stable and finally at 0.0047 the GA exhibits

optimal performance for 500 iterations of GA. Later in all experimentations the

mutation rate is set to 0.0047 in both BGA and SGA.

4.2 BGA

The performance of BGA compared to other benchmark techniques is exhibited

based on the makespan and ARUR. Each technique is evaluated on average of

three experiments as the meta-heuristics are stochastic in nature. The MGGS,

ETA-GA, DSOS and RALBA are compared with BGA for makespan and ARUR.

4.2.1 Makespan

The makespan of BGA is analyzed on GoCJ and Synthetic datasets, whereas in

synthetic dataset all categorizes namely left, right, normal and uniform workload
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are utilized in experimentations.

The Figure 4.3 shows the makespan of BGA using GoCJ dataset on batch sizes

of 100 to 550 with the difference of 50 in batch sizes. BGA has achieved better

makespan in most of the cases. At batch of 100 and 150 the BGA and RALBA are

almost same, while in all other batch sizes the BGA has achieved better makespan

as compared to MGGS, ETA-GA, DSOS and RALBA. The MGGS shows worst

performance for small batch sizes as shown in Figure 4.3. The ETA-GA does not

show good makespan on increasing the batch size and its performance declined on

batch of 300 and onwards.

100 150 200 250 300 350 400 450 500 550

BGA 300.0999 407.24279 434.53851 461.54093 638.53955 723.79753 793.57189 854.27769 995.26176 1095.2556

MGGS 518.43167 890.13405 1090.0982 1226.7629 1290.0946 1333.4284 1303.5368 1423.4671 1380.1338 1575.0977

ETA_GA 406.07183 643.04967 800.0967 942.62894 1348.7956 1584.6491 1937.5569 2080.4232 2452.8666 2907.4202

DSOS 379.78251 606.20795 737.74248 762.89754 1091.6401 1323.4912 1406.0382 1441.0114 1679.7605 1750.7339

RALBA 300.09962 403.22467 468.66922 469.59851 642.54087 733.43043 797.2066 859.25261 997.33029 1101.845
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Figure 4.3: Makespan on GoCJ Dataset 100 to 550

The makespan of BGA using GoCJ dataset on batch sizes 600 to 1000 are exhibited

in Figure 4.4. The ETA-GA declined further on large batch sizes. The BGA has

attained better makespan than all benchmark techniques. The MGGS takes lot

of time on large batch sizes and also improves but the makespan of BGA is still

better than MGGS. Figure 4.5 shows the average of all batch sizes to demonstrate

the overall behavior in terms of makespan on GoCJ dataset. BGA has achieved
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33.1, 65.5, 40.4 and 1% average improvement in makespan than MGGS, ETA-GA,

DSOS and RALBA respectively.

600 650 700 750 800 850 900 950 1000

BGA 1256.78341 1350.23768 1335.2621 1556.48044 1509.78408 1621.87988 1830.62172 1804.9516 1976.82824

MGGS 1575.09785 1800.1349 1680.1356 2300.09715 1800.16944 1853.68738 3588.46314 2458.4613 2243.49932

ETA_GA 3307.41722 3748.8042 4207.78011 4394.42247 4925.07232 5572.5571 6007.7355 6500.09825 7021.43634

DSOS 2105.62969 2232.11002 2228.88964 2667.94437 2703.3617 2614.19119 3014.98364 3201.19071 3238.687

RALBA 1290.98039 1384.61671 1345.29365 1559.8078 1511.25539 1625.86716 1862.09611 1824.87667 1980.764
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Figure 4.4: Makespan on GoCJ Dataset 600 to 1000
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Figure 4.5: Average Makespan on GoCJ Dataset

The makespan is analyzed on all categories of synthetic dataset for batch sizes of

100 to 1000 with the difference of 100 in batch sizes. Figure 4.6 shows the analysis
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of makespan on left skewed dataset and most of the times the makespan of BGA

is better than other techniques. RALBA shows better makespan at batch size

100 and 1000, other than that the makespan of BGA is better than RALBA. The

Figure 4.7 exhibits the average of all batch sizes to show the trend of improvement

in BGA. On average the BGA has achieved 27.3, 71.9, 40.5, and 4.6% better

makespan than MGGS, ETA-GA, DSOS and RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 67.63581 124.79589 176.33443 241.03265 297.30082 341.42938 391.90449 452.55562 506.0449 577.1806

MGGS 277.39621 313.72459 325.68916 347.94927 341.38443 376.00645 410.74642 575.99418 656.17875 747.01067

ETA_GA 104.451 236.03823 380.78921 651.5504 774.85692 1097.292 1482.5231 1837.0631 2192.8362 2562.1816

DSOS 106.5961 213.64965 315.03029 393.32981 510.59731 593.07218 677.7379 768.17379 840.11002 928.12276

RALBA 65.115129 135.7265 180.38 301.894 302.911 348.207 401.27115 462.22529 561.55133 572.2605
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Figure 4.6: Makespan on Left Skewed Dataset
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Figure 4.7: Average Makespan on Left Skewed Dataset
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The Figure 4.8 shows the makespan analysis on right skewed dataset. It is evident

that in most of the batch sizes the BGA showed better makespan. Figure 4.9 shows

that BGA has attained 19.8, 72.2, 42.4, and 3.2% improvement in makespan than

MGGS, ETA-GA, DSOS and RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 49.57166 95.173581 146.9204 192.62713 229.54169 278.05759 320.57305 366.19369 419.56754 458.73992

MGGS 202.44569 213.17251 210.05975 212.52875 312.09035 310.21171 359.41922 419.37778 448.42487 501.58

ETA_GA 88.535972 207.346 355.68573 478.53772 664.53715 901.64534 1085.4237 1516.5457 1748.7373 2156.6228

DSOS 92.159308 167.58801 265.1144 333.7623 409.1939 505.94375 561.47129 630.70763 691.05813 785.97384

RALBA 52.781821 98.827914 167.95275 206.86333 233.18133 284.446 328.79883 372.7712 415.62614 482.4253
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Figure 4.8: Makespan on Right Skewed Dataset
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Figure 4.9: Average Makespan on Right Skewed Dataset
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The Figure 4.10 shows the makespan analysis on normal dataset and Figure 4.11

shows average percentage of improvement of BGA against other techniques. BGA

has achieved better makespan on all batch sizes of normal dataset. The improve-

ment of BGA is 23.3, 72.1, 41.6, and 5.9% against MGGS, ETA-GA, DSOS and

RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 72.500822 132.88267 189.32628 262.05997 319.93634 369.72438 427.56465 491.82928 553.28741 634.52567

MGGS 293.05875 329.2961 343.72932 349.88444 343.5808 405.37111 458.52447 534.53443 669.87665 776.99234

ETA_GA 111.47813 255.4067 429.79336 727.39216 902.23882 1233.8351 1532.6231 1995.8726 2236.4063 2962.7985

DSOS 120.04597 232.19813 350.30872 441.74665 522.06279 670.56757 729.98001 850.56605 960.3493 1036.3996

RALBA 72.590821 138.4597 195.9344 306.47039 333.19636 381.4829 436.93303 501.32724 653.68767 651.1
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Figure 4.10: Makespan on Normal Dataset
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Figure 4.11: Average Makespan on Normal Dataset
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The Figure 4.12 and Figure 4.13 demonstrate the behavior of BGA and other

techniques on uniform dataset. BGA shows improvement in all batch sizes. The

percentage of improvement in makespan against MGGS, ETA-GA, DSOS and

RALBA are 19.2, 71.9, 42.1, and 6.7% respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 62.351475 117.38123 174.42183 242.23278 289.27466 342.84776 401.8199 463.86156 521.21478 575.02785

MGGS 252.2166 261.50231 267.34607 270.97043 330.87396 389.25962 451.98453 493.40411 556.6783 675.73283

ETA_GA 110.32219 262.95367 405.96727 624.65556 886.45384 1122.5424 1454.8463 1824.5762 2140.9801 2534.1724

DSOS 116.43259 220.06471 308.05866 415.3196 502.93989 585.66431 709.55849 809.09311 895.84987 950.01217

RALBA 66.811571 124.1044 223.12667 261.06708 294.34254 349.5708 416.01133 483.744 598.60217 603.68224
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Figure 4.12: Makespan on Uniform Dataset
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Figure 4.13: Average Makespan on Uniform Dataset
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It is evident that BGA outperforms all other techniques on two different datasets

in terms of makespan. The RALBA is a close competitor of BGA. MGGS and

DSOS are good at large batch sizes whereas ETA-GA does not perform well in

1000 iterations.

4.2.2 ARUR

The ARUR is a measure to compute the resource utilization. The performance

of BGA is tested on GoCJ and then on synthetic dataset. Figure 4.14 shows the

ARUR of BGA and other techniques on GoCJ dataset for batch size 100 to 550

with the difference of 50 in batch sizes. RALBA shows good ARUR on batch size

100 and 200, whereas BGA outperforms on large batch sizes. Figure 4.15 shows

the analysis of ARUR on GoCJ dataset with batch sizes between 600 and 1000.

Overall BGA exhibits 30, 80.4, 83.1, and 0.5% improvement in ARUR against

MGGS, ETA-GA, DSOS and RALBA respectively as shown in Figure 4.16. For

large batch sizes the BGA has good load balancing on GoCJ dataset.

100 150 200 250 300 350 400 450 500 550

BGA 0.5592667 0.7016538 0.8960508 0.9657226 0.9729228 0.9785577 0.9834604 0.9803559 0.9819342 0.9866485

MGGS 0.4591557 0.5425474 0.5076553 0.5163084 0.5894706 0.6584958 0.7145103 0.704094 0.7919877 0.763281

ETA_GA 0.438154 0.528499 0.5721497 0.5759192 0.5635135 0.5805777 0.5487288 0.5427888 0.571012 0.5533003

DSOS 0.3864666 0.4274447 0.4653618 0.4625754 0.5096391 0.4727453 0.5302755 0.5459487 0.5302489 0.5272896

RALBA 0.5914664 0.7545834 0.8566664 0.963557 0.9714607 0.9683129 0.9773694 0.9680769 0.9874635 0.9801885
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Figure 4.14: ARUR on GoCJ Dataset 100 to 550
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600 650 700 750 800 850 900 950 1000

BGA 0.99095543 0.99229136 0.99021101 0.99201965 0.99389934 0.99208752 0.99369531 0.99501427 0.99519947

MGGS 0.84424846 0.8104963 0.85232407 0.80702315 0.87523333 0.89689192 0.70318107 0.8473815 0.91119835

ETA_GA 0.54039618 0.52453574 0.50147258 0.51823128 0.50017364 0.46769716 0.48431461 0.46067798 0.47297113

DSOS 0.52478271 0.54691271 0.5465586 0.57728183 0.54573251 0.52583404 0.58130073 0.54709851 0.54428046

RALBA 0.96563981 0.96314096 0.97987861 0.9925647 0.99335934 0.98995507 0.97203545 0.97729826 0.99269122
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Figure 4.15: ARUR on GoCJ Dataset 600 to 1000
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Figure 4.16: Average of ARUR on GoCJ Dataset

The analysis of BGA on left skewed dataset for ARUR reveals that BGA signif-

icantly improves the resource utilization on large batch sizes. The Figure 4.17

shows the ARUR on batch sizes 100 to 1000, whereas Figure 4.18 represents the

average behavior on all batch sizes. From the average value it is evident that

improvements in ARUR of BGA as compared to MGGS, ETA-GA, DSOS and
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RALBA are 15.2, 77, 60.6, and 5.4% respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 0.64759 0.7380749 0.8214959 0.7927258 0.8470869 0.9751352 0.992316 0.9753326 0.9622878 0.924247

MGGS 0.270946 0.4877317 0.7089968 0.7727782 0.8934941 0.9181055 0.9575737 0.8322288 0.832242 0.855372

ETA_GA 0.533253 0.5222928 0.6126692 0.4973657 0.5485887 0.4916075 0.4562228 0.4355346 0.4050351 0.3984393

DSOS 0.427876 0.4485624 0.492119 0.5675525 0.5471831 0.5628766 0.5643751 0.5887527 0.5888905 0.6129486

RALBA 0.6781546 0.6627108 0.7916553 0.6405004 0.8297276 0.9473664 0.9498738 0.9401829 0.8622076 0.9274047
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Figure 4.17: ARUR on Left Skewed Dataset
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Figure 4.18: Average of ARUR on Left Skewed Dataset

The ARUR of BGA and other techniques is compared on right skewed dataset

as shown in Figure 4.19 and the average of all batch sizes is exhibited in Figure

4.20. The BGA outperforms in most of the batch sizes whereas MGGS is better

than RALBA in some large batch sizes. Overall on average the percentage of
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improvement in ARUR of BGA is 12.5, 89.5, 70.1, and 6.1% higher than MGGS,

ETA-GA, DSOS and RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 0.8005625 0.8082315 0.8132177 0.8073968 0.9886042 0.9835071 0.9798922 0.9665803 0.9472277 0.9856855

MGGS 0.3126596 0.6395741 0.7773996 0.8912757 0.8426987 0.9209987 0.9140391 0.9038244 0.9324492 0.9318369

ETA_GA 0.5001798 0.4863838 0.5468214 0.5297831 0.5306986 0.4854181 0.4802717 0.4224186 0.416982 0.3924667

DSOS 0.4403867 0.4413534 0.4912732 0.5297788 0.5421527 0.5493838 0.5678814 0.5813994 0.5947398 0.5975615

RALBA 0.747886 0.7391355 0.70347 0.7505266 0.9704546 0.9517659 0.9293894 0.9286539 0.9345931 0.8953169
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Figure 4.19: ARUR on Right Skewed Dataset
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Figure 4.20: Average of ARUR on Right Skewed Dataset

The Figure 4.21 the performance of BGA is compared on normal dataset. It is

inferred that BGA has shown good ARUR on large datasets and at batch size 500

MGGS is better. Mostly BGA is better whereas RALBA and MGGS are close
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competitors in some cases. The Figure 4.22 shows the average behavior of all batch

sizes. BGA improves 12.5, 82.2, 65.2, and 6% in ARUR as compared to MGGS,

ETA-GA, DSOS and RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 0.6751812 0.766439 0.8259295 0.7996856 0.8212465 0.9890996 0.989262 0.9803455 0.9660473 0.9181739

MGGS 0.2935554 0.5383885 0.7085077 0.7992584 0.9086554 0.9264821 0.9429007 0.9285893 0.8647267 0.8487974

ETA_GA 0.5294356 0.5107699 0.5733107 0.4955148 0.513661 0.4831041 0.4475461 0.4284588 0.4270237 0.3827007

DSOS 0.4207313 0.4406239 0.4702346 0.5424266 0.5753467 0.5500179 0.5755696 0.5555316 0.5544744 0.5973322

RALBA 0.7096332 0.7043272 0.7845586 0.6872904 0.8075345 0.9527714 0.9472917 0.9396131 0.8093708 0.8872009
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Figure 4.21: ARUR on Normal Dataset
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Figure 4.22: Average of ARUR on Normal Dataset

The BGA is compare on uniform dataset as shown in Figure 4.23. Mostly the

value of ARUR is good using the BGA. The average ARUR of all batch sizes in
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uniform dataset is shown in Figure 4.24. On average BGA is 12.5, 82.2, 65.2, and

6% better than MGGS, ETA-GA, DSOS and RALBA respectively.

100 200 300 400 500 600 700 800 900 1000

BGA 0.7951303 0.8283897 0.8415375 0.8085833 0.9864432 0.9820514 0.9824416 0.9754759 0.9643032 0.9670305

MGGS 0.3218068 0.6524844 0.7596748 0.8905542 0.893849 0.9112389 0.9151185 0.9498392 0.9360059 0.8812457

ETA_GA 0.5063896 0.5205069 0.5691462 0.5069379 0.4996846 0.4943067 0.4627349 0.4328055 0.4185598 0.4028568

DSOS 0.4214518 0.4491363 0.5054111 0.5477002 0.5577174 0.559786 0.5841123 0.5464753 0.6041989 0.591816

RALBA 0.7363357 0.7440575 0.6389351 0.7471617 0.9708253 0.9565791 0.9252195 0.9120887 0.820132 0.886737

0

0.2

0.4

0.6

0.8

1

1.2
A

R
U

R
 (

0
 -

1
)

Number of Cloudlets

BGA MGGS ETA_GA DSOS RALBA

Figure 4.23: ARUR on Uniform Dataset
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Figure 4.24: Average of ARUR on Uniform Dataset

Overall it can be concluded that BGA outperforms than other benchmark tech-

niques in reducing the makespan while improving the load balancing. The research
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question no.1 is to show how makespan and load balancing can be improved. Us-

ing the BGA the load balancing and makespan has improved in comparison to

other state-of-the-art techniques. This has been demonstrated using extensive

experimentation and findings are revealed in Section 4.2. The research question

no.3 is about the effect of fusing heuristic with meta-heuristic in task scheduling.

From the evaluation of BGA it can be said that the merger of heuristic with meta-

heuristic assists in achieving the good fitness value for the defined objectives. The

working of BGA has already been described in methodology chapter. The findings

reveal that BGA balances the workload and improves the makespan, therefore the

effect of fusion is positive.

4.3 SGA

The working of SGA has already been discussed in chapter no.3. SGA is applicable

where meta-heuristic based scheduler is required and the main concern here is

improvement in the convergence speed of GA. When to use SGA has already

been discussed in Section 3.6. For convergence analysis only meta-heuristics can

be compared with SGA. Usually the fitness value is compared and the fitness of

properly implemented technique improves over the iterations. As the presented

technique is multi-objective and the representation of fitness value is different from

other techniques. Therefore, the techniques cannot be compared on the basis of

fitness value. The fitness function in SGA is designed to improve the makespan

and load balancing. The prime focus of SGA is to speed up the convergence of

GA. To test the working of SGA with other techniques, makespan and ARUR are

analyzed for 500 iterations. As SGA is claimed to be fast so 500 iterations are

chosen to exhibit the behavior of convergence. Convergence does not really mean

that SGA would not converge further after 500 iterations. The 500 iterations are

chosen to show that SGA can reach to a good solution in fewer iterations. SGA

does not have any heuristic embedded in it thus the working is just like a normal

GA based meta-heuristic, except the speed of search process is fast.
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SGA is compared with ETA-GA and DSOS as already discussed in Section 3.8.

The value of makespan cannot decline over the iterations whereas the value of

ARUR may decline. The fitness function is designed in such a way that it has

makespan value added in the load balancing factor. The fitness function and the

reasons for such a multi-objective relation is already described in chapter no.3.

The makespan should be good and then for that good makespan value the best

solution should be the one which has good load balancing. When a new best

solution is found in SGA which has good makespan it is possible that the resource

utilization is not as good as it was with previously found best solution. This is why

the ARUR value may decline at some points in the search space. The convergence

is about reaching to a good solution and fast convergence means quickly reaching

to a good solution [10, 66, 73, 79]. This behavior of SGA is exhibited through

experimentations. The experiments are conducted on two datasets for all batch

sizes for 500 iterations.

The makespan and ARUR evaluated on realistic dataset with improvement is

demonstrated in Table 4.1, 4.2, 4.3, 4.4, 4.5 for GoCJ, Left Skewed, Right Skewed,

Normal and Uniform datasets respectively. The improvement in the makespan

and ARUR value after 500 iterations shows that SGA converges fast to a good

solution as compared to DSOS and ETA-GA. SGA keeps improving even after 500

iterations but initial 500 iterations are fast due to the mutualism phase.
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Table 4.1: Makespan and ARUR on GoCJ Dataset

GoCJ

Dataset

Makespan ARUR

Instances SGA DSOS ETA-

GA

SGA DSOS ETA-

GA

100 324.9167 368.381 391.381 0.493056 0.411585 0.474886

150 463.7619 602.375 713.6667 0.651927 0.421811 0.533392

200 519.6667 770.3333 843.3333 0.749427 0.426566 0.535037

250 603.3333 800.3333 1045.333 0.744245 0.467848 0.546647

300 767.4286 1154.333 1338.333 0.835062 0.482277 0.580865

350 874.6667 1279.889 1743.333 0.820597 0.499872 0.550301

400 1012.705 1362.267 1934.333 0.815529 0.516789 0.549207

450 1015.4 1689.952 2347.333 0.863761 0.486778 0.514823

500 1340.667 1729.489 2576.889 0.820835 0.528553 0.54826

550 1419.667 1934.333 3268.333 0.844188 0.487583 0.47675

600 1711.556 2342.867 3491 0.83587 0.523907 0.53142

650 1781.222 2388.286 3754.667 0.852966 0.54233 0.526693

700 1769.889 2410.4 4439 0.854103 0.524951 0.470638

750 2077.389 2735.5 4876 0.84896 0.551245 0.490975

800 1997.333 2759.133 5046.667 0.860368 0.556561 0.478193

850 2150.444 2863.222 5810.667 0.857086 0.540586 0.461487

900 2319.833 3155.667 6261 0.875597 0.56886 0.472049

950 2394.333 3206.111 6763 0.872952 0.56943 0.44655

1000 2690.552 3349.3 7417.334 0.857144 0.589273 0.451763

Average 1433.409 1942.22 3371.663 0.808088 0.510358 0.507365
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Table 4.2: Makespan and ARUR on Left Skewed Dataset

Left

Skewed

Dataset

Makespan ARUR

Instances SGA DSOS ETA-

GA

SGA DSOS ETA-

GA

100 70.828 111.603 112.0033 0.608008 0.394794 0.478918

200 137.5129 231.5819 251.3087 0.709519 0.435346 0.499047

300 206.764 337.933 421.6253 0.742223 0.482385 0.561242

400 286.2604 415.8458 677.19 0.741419 0.558862 0.485646

500 374.587 527.3088 837.854 0.76762 0.541502 0.52116

600 441.5231 607.8028 1286.294 0.844841 0.545933 0.431756

700 533.948 708.4305 1478.967 0.827345 0.539684 0.437822

800 653.5373 784.06 2071.097 0.825268 0.586492 0.388065

900 696.4433 863.8748 2655.967 0.859334 0.59558 0.360534

1000 790.1988 971.4894 3056.184 0.852897 0.573807 0.354253

Average 419.1603 555.993 1284.849 0.777848 0.525439 0.451844
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Table 4.3: Makespan and ARUR on Right Skewed Dataset

Right

Skewed

Dataset

Makespan ARUR

Instances SGA DSOS ETA-

GA

SGA DSOS ETA-

GA

100 56.89543 95.54705 87.98 0.671826 0.421128 0.501459

200 111.4062 183.4893 223.4967 0.701454 0.438541 0.504708

300 168.5147 263.221 352.81 0.749591 0.501393 0.540513

400 240.6553 341.4451 495.9967 0.767312 0.543361 0.512504

500 289.364 414.9299 708.8464 0.858416 0.561273 0.499284

600 376.4221 528.7567 956.5007 0.820179 0.538311 0.471086

700 455.062 569.1076 1244.707 0.828156 0.564766 0.436286

800 510.564 656.81 1595.697 0.84787 0.586151 0.399604

900 565.812 726.9176 2013.59 0.854027 0.594033 0.372961

1000 642.4182 800.6078 2204.27 0.851923 0.595052 0.380695

Average 341.7114 458.0832 988.3894 0.795075 0.534401 0.46191
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Table 4.4: Makespan and ARUR on Normal Dataset

Normal

Dataset

Makespan ARUR

Instances SGA DSOS ETA-

GA

SGA DSOS ETA-

GA

100 77.35533 121.7691 120.1471 0.602952 0.407817 0.501366

200 147.7476 232.8318 287.5244 0.714275 0.440364 0.490894

300 228.6627 372.0059 439.6753 0.734346 0.486339 0.562949

400 310.9887 456.7033 722.548 0.739946 0.54788 0.504662

500 384.6657 553.4755 995.2967 0.764508 0.580643 0.472532

600 472.5077 676.7886 1327.797 0.846837 0.526342 0.45595

700 607.4657 763.464 1645.899 0.808521 0.550871 0.438681

800 692.9867 857.08 2081.943 0.83081 0.600624 0.412057

900 749.09 962.3262 2542.92 0.861566 0.559447 0.388602

1000 886.2303 1062.875 3087.51 0.837535 0.590557 0.364594

Average 455.77 605.932 1325.126 0.77413 0.529088 0.459229
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Table 4.5: Makespan and ARUR on Uniform Dataset

Uniform

Dataset

Makespan ARUR

Instances SGA DSOS ETA-

GA

SGA DSOS ETA-

GA

100 72.199 126.7525 118.54 0.64739 0.413737 0.497374

200 138.5447 234.1715 268.4493 0.724816 0.449463 0.5033

300 210.2592 326.2798 464.1067 0.737971 0.467321 0.511934

400 288.9 420.9528 677.8533 0.767379 0.548463 0.487874

500 358.144 523.5364 870.5531 0.853099 0.552948 0.506337

600 463.1556 618.09 1219.887 0.821739 0.5793 0.461766

700 564.6367 720.7766 1630.27 0.833491 0.561443 0.427475

800 638.4333 842.1916 1936.103 0.862735 0.582226 0.419837

900 714.3951 889.5197 2406.237 0.848897 0.588171 0.388018

1000 802.1932 994.7424 2817.136 0.84965 0.574878 0.369923

Average 425.086 569.7013 1240.913 0.794717 0.531795 0.457384

To exhibit the behavior of fast convergence the performance measures are demon-

strated for all datasets. The convergence of performance measures on batch size

of 500 and 1000 are expressed for 500 iterations.

4.3.1 Makespan

The Figure 4.25 shows the convergence for the makespan value on batch of 500

tasks using GoCJ dataset. It shows that SGA is fast in convergence than DSOS

and ETA-GA. The Figure 4.26 shows the makespan on batch size 1000 of GoCJ

dataset. On large size of batch, the ETA-GA converges very slow whereas SGA is

fastest among all.
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Figure 4.25: Makespan on GoCJ Dataset of 500 Jobs
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Figure 4.26: Makespan on GoCJ Dataset of 1000 Jobs

The Figure 4.27 and Figure 4.28 shows the convergence of SGA and other tech-

niques on Left Skewed dataset for batch of 500 and 1000 respectively. On left

skewed dataset SGA is fastest among all.
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Figure 4.27: Makespan on Left Skewed Dataset of 500 Jobs
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Figure 4.28: Makespan on Left Skewed Dataset of 1000 Jobs

The Figure 4.29 and 4.30 shows the convergence on right skewed dataset for batch

size of 500 and 1000 respectively. Here DSOS is comparatively close than ETA-GA

but SGA outperforms.
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Figure 4.29: Makespan on Right Skewed Dataset of 500 Jobs
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Figure 4.30: Makespan on Right Skewed Dataset of 1000 Jobs

On normal dataset at batch 500 and 1000 the ETA-GA improves but still lack in

speed than SGA and DSOS, whereas DSOS converges faster than all. It is shown

in Figure 4.31 and 4.32.
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Figure 4.31: Makespan on Normal Dataset of 500 Jobs
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Figure 4.32: Makespan on Normal Dataset of 1000 Jobs

The convergence on uniform dataset is demonstrated in Figure 4.33 and 4.34 for

batch of 500 and 1000 respectively. It is evident that SGA outperforms in conver-

gence speed for all datasets.
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Figure 4.33: Makespan on Uniform Dataset of 500 Jobs
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Figure 4.34: Makespan on Uniform Dataset of 1000 Jobs

4.3.2 ARUR

The Figure 4.35 and 4.36 shows the analysis of ARUR on GoCJ dataset for batch

of 500 and 1000 respectively. SGA significantly outperform for ARUR.
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Figure 4.35: ARUR on GoCJ Dataset of 500 Jobs
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Figure 4.36: ARUR on GoCJ Dataset of 1000 Jobs

The Figure 4.37 shows the convergence on left skewed dataset for ARUR value on

batch of 500 whereas the Figure 4.38 shows convergence on batch of 1000. The

SGA outperforms here.
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Figure 4.37: ARUR on Left Skewed Dataset of 500 Jobs
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Figure 4.38: ARUR on Left Skewed Dataset of 1000 Jobs

Figure 4.39 and 4.40 shows convergence on right skewed dataset for ARUR value on

batch of 500 and 1000 respectively. Here SGA outperforms than other techniques.
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Figure 4.39: ARUR on Right Skewed Dataset of 500 Jobs
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Figure 4.40: ARUR on Right Skewed Dataset of 1000 Jobs

On normal dataset for batch of 500 and 100 the SGA converges faster than other

techniques and it is shown in Figure 4.41 and 4.42.

On the uniform dataset at batch size 500 the SGA outperforms in ARUR but
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Figure 4.41: ARUR on Normal Dataset of 500 Jobs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500

A
R

U
R

 (
0

 -
1

)

NUMBER OF ITERATIONS

SGA DSOS ETA_GA

Figure 4.42: ARUR on Normal Dataset of 1000 Jobs

DSOS and ETA-GA are relatively close to each other. In batch size 1000 the

difference of ARUR value is large and again the SGA converges faster. It is shown

in Figure 4.43 and 4.44.
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Figure 4.43: ARUR on Uniform Dataset of 500 Jobs
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Figure 4.44: ARUR on Uniform Dataset of 1000 Jobs

From the experimentations it is apparent that BGA and SGA performs better in

achieving their objectives which are mapped with the research questions and the

mapping is expressed in Section 3.6.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The task scheduling problem in cloud computing requires the efficient mapping

of jobs to virtual resources. Due to the heterogeneity of jobs and resources many

possible mappings can be defined. The heuristic and meta-heuristic schedulers are

utilized to map independent jobs. The meta-heuristic has potential to explore the

huge search space of possible solutions. The genetic based BGA has been presented

in the research to improve the makespan and resource utilization. Whereas, the

SGA also focuses on the convergence speed. The presented techniques are com-

pared with some recent meta-heuristic and heuristic techniques. The genetic based

other techniques are also evaluated with the presented techniques. The synthetic

and realistic datasets are employed to discover the working of the presented tech-

niques. The need for multi-objective optimization is emphasized and the presented

work demonstrates the techniques for achieving multi-objectives. Following facets

are reflected in the research work.

1. The problem of independent task scheduling in heterogeneous cloud environ-

ment is emphasized.

2. Heuristic, meta-heuristic and hybrid techniques are meticulously evaluated for

optimal scheduling.
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3. Need for the adoptability of meta-heuristic is rigorously accentuated.

4. The power of genetic based evolutionary approach in meta-heuristic is ratio-

nalized.

5. Two most prominent quality of service (QoS) parameters namely makespan

and resource utilization are concentrated in this thesis for the definition of opti-

mal mapping.

6. For the achievement of enhancement in the said QoS, the multi-objective opti-

mization is accentuated as necessity and a relation in the form of objective function

is articulated.

7. Fine tuning of parameters in BGA and SGA is detailed for balancing the ex-

ploration and exploitation process.

8. A load balancing mechanism is presented and deployed through BGA for im-

proving makespan in a load balanced way.

9. The symbiosis relationship is inculcated in GA to form SGA, to improve the

convergence of genetic based task scheduler.

10. The proportionate selection operator with scaling is projected to improve di-

versity in the population of the presented schedulers.

11. The performance is evaluated with state-of-the-art techniques on two different

types of dataset.

5.2 Future Work

Cloud computing environment has both dependent and independent jobs. The

presented work only focuses on the independent task scheduling whereas in fu-

ture the presented techniques can be extended to comply with the requirements

of dependent jobs. The scheduling can be static or dynamic. The presented work

is for static task scheduling. Static and dynamic scheduling have their own ad-

vantages and applications. In future the same concepts of presented work with

some necessary changes can also be used for dynamic scheduling. Cloud com-

puting has lot of challenges and one prime objective is to improve the customer

satisfaction. The demand of quality of services introduces the concept of service
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level agreement (SLA) in which the services are negotiated among service con-

sumer and provider. Currently the presented work does not take in consideration

the priorities or SLA. The presented work may also be enhanced to invigorate the

SLA fulfillment through the scheduler. There are many possible amendments ex-

perimented in the meta-heuristic presented approach and successful are deployed.

There are still many prospects and some of the directions for improvement in

genetic based task scheduler are expressed in the below section.

1. Finding the effect of mutation after the mutualism phase.

2. Generating new population with symbiotic operator rather than the crossover.

3. Experimenting with different number of elites and variable crossover rate.

4. Defining a rule based adaptive mutation rate in genetic algorithm.

5. Using the concept of distance of best chromosome as reference point in the

crossover operation.

6. Using different population initialization strategies in task scheduling.

7. Examining the effect of having more than two cut-points of crossover on the

population.

8. Merging GA with other popular meta-heuristics.

9. Defining weights for over and underloaded machines to have better load bal-

ancing using BGA.

10. Dedicating a portion of population to be generated by less fitted chromosomes

so that their genes may also participate in each generation rather than in some

random generations of GA.
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